加西贝拉压缩机有限公司 嘉兴加西贝拉压缩机有限公司未来工厂 建设技术改造项目 竣工环境保护验收监测报告

建设单位: 加西贝拉压缩机有限公司

编制单位: 嘉兴嘉卫检测科技有限公司

2024年12月

建设单位法人代表:杨秀彪

编制单位法人代表:董梁

项目负责人:徐钦良

建设单位: 加西贝拉压缩机有限公司(盖章)

电话:13575349459

传真: /

地址: 嘉兴市秀洲区王店镇百乐路 256 号

编制单位: 嘉兴嘉卫检测科技有限公司(盖章)

电话:0573-82820806

传真:0573-82820906

地址: 嘉兴市南湖区大桥镇凌公塘路 3339 号 (嘉兴科技城) 4 号楼 3 楼

目 录

1. 项目概况	1
2. 验收依据	3
2.1 建设项目环境保护相关法律、法规和规章制度	3
2.2 建设项目竣工环境保护验收技术规范	3
2.3 建设项目环境影响报告表及其审批部门审批决定	4
2.4 其他相关文件	4
3. 项目建设情况	5
3.1 地理位置及平面布置	5
3.2 建设内容	8
3.3 主要原辅材料及燃料	9
3.4 水源及水平衡	10
3.5 工艺流程	10
3.6 项目变动情况	15
4. 环境保护设施	
4.1 污染物治理/处置设施	
4.2 其他环境保护设施	26
4.3 环保设施投资及"三同时"落实情况	27
5. 环境影响报告表主要结论与建议及其审批部门审批决定	31
5.1 环境影响报告表主要结论与建议	31
5.2 审批部门审批决定	31
6. 验收执行标准	34
6.1 废水执行标准	
6.2 废气执行标准	34
6.3 噪声执行标准	36
6.4 固废参照标准	
6.5 总量控制指标	36
7. 验收监测内容	37
7.1 环境保护设施调试效果	37
7.2 环境质量监测	38
8. 质量保证及质量控制	
8.1 监测分析方法	39
8.2 监测仪器	
8.3 人员资质	
8.4 水质监测分析过程中的质量保证和质量控制	
8.5 气体监测分析过程中的质量保证和质量控制	
8.6 噪声监测分析过程中的质量保证和质量控制	
8.7 固(液)体废物监测分析过程中的质量保证和质量控制	
8.8 土壤监测分析过程中的质量保证和质量控制	
9. 验收监测结果	
9.1 生产工况	
9.2 环保设施调试运行效果	45

58	9.3 工程建设对环境的影响	9.
). 以新带老整改情况	
	. 验收监测结论	
/	10.1 环保设施调试运行效果	10 10

附件目录

- 附件 1. 加西贝拉压缩机有限公司环评批复
- 附件 2. 加西贝拉压缩机有限公司排污许可证
- 附件 3. 加西贝拉压缩机有限公司关于成立验收小组的决定
- 附件 4. 加西贝拉压缩机有限公司主要生产设备清单一览表
- 附件 5. 加西贝拉压缩机有限公司产品统计表和原辅料消耗一览表
- 附件 6. 加西贝拉压缩机有限公司固体废物产生情况及处置证明
- 附件 7. 加西贝拉压缩机有限公司验收监测期间工况表
- 附件 8. 加西贝拉压缩机有限公司水费发票
- 附件 9. 加西贝拉压缩机有限公司现场监测照片
- 附件 10. 加西贝拉压缩机有限公司应急预案备案表
- 附件 11. 嘉兴嘉卫检测科技有限公司检测报告 HJ240317 号

1. 项目概况

加西贝拉压缩机有限公司成立于 1988 年,一厂(王店镇厂区)厂址位于嘉兴市王店镇(属秀洲区管辖范围),二厂厂址位于南湖区亚中路 588 号(属南湖区管辖范围),三厂厂址位于南湖区东风路 1888 号(属南湖区管辖范围),是一家专业从事环保、高效型冰箱、冷柜压缩机研究、开发和制造的生产企业,是国内首家研制生产无氟碳氢压缩机企业。加西贝拉压缩机有限公司王店镇厂区环评为《中外合资嘉兴电冰箱压缩机厂新建工程环境影响报告书》(1990 年)和《加西贝拉压缩机有限公司引进冰箱压缩机厂新建工程环境影响报告书》(1990 年)和《加西贝拉压缩机有限公司引进冰箱压缩机电机定子生产线技术改造项目环境影响报告表》(1996 年)。根据验收文件秀洲环验[2009]57 号可知,秀洲区产能为压缩机500 万台。

加西贝拉压缩机有限公司王店镇厂区投资 10500 万元,利用现有厂房和公用设施,新建 2 条冰箱压缩机生产线,可实现新增产能 600 万台/年,并对现有设备进行自动化改造。同时基于信息化建设需求,新增数据采集、服务器等硬件设备,新建 MES、数据中台、数据应用软件管理系统等,引入大数据、云原生、区块链技术及国家标识解析体系,实现工业 IT 和 0T 的深度融合,实现数据的统一化管理及数据驱动决策。

2024年6月委托浙江翠金环境科技有限公司编制完成了《嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目环境影响报告表》(污染影响类),并于2024年7月26日由嘉兴市生态环境局(秀洲)出具审查意见(嘉环秀建(2024)29号)。

全厂已重新申领了排污许可证,编号为91330411609101012K003U。

2024年8月,该项目开始建设,2024年8月开始生产,目前该工程项目主要生产设施和环保设施运行正常,具备了环保设施竣工验收条件。

受加西贝拉压缩机有限公司的委托,由嘉兴嘉卫检测科技有限公司承担该项目竣工环境保护监测工作。根据《建设项目竣工环境保护验收技术指南 污染影响类》的规定和要求,加西贝拉压缩机有限公司于 2024 年 11 月 1 日对该项目进行现场勘察,查阅相关技术资料,并在此基础上编制了该项目竣工环境保护验收监测方案。依据监测方案,嘉兴嘉卫检测科技有限公司于 2024 年 11 月 25 日、26

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测 报告

日、27日、28日、12月2日分五个生产周期对该项目进行了现场监测和环境管理检查,在此基础上编写了本报告。

2. 验收依据

2.1 建设项目环境保护相关法律、法规和规章制度

- 1、《中华人民共和国水污染防治法》(2017年6月27日第二次修正):
- 2、《中和人民共和国环境影响评价法》,中华人民共和国主席令第48号;
- 3、新《中华人民共和国水法》(2016年7月修订):
- 4、《中华人民共和国环境大气污染防治法(2018 修订)》,2018 年 10 月 26 日 第十三届全国人民代表大会常务委员会第六次会议:
- 5、《中华人民共和国环境保护法》(自2015年1月1日起施行);
- 6、《中华人民共和国固体废物污染环境防治法》(2020年9月1日实施);
- 7、《中华人民共和国噪声污染防治法(2022年6月5日实施)》,2021年12月 24日第十三届全国人民代表大会常务委员会第三十二次会议:
- 8、中华人民共和国国务院令第253号《建设项目环境保护管理条例》;
- 9、中华人民共和国国务院令第 682 号《国务院关于修改〈建设项目环境保护管理条例〉的决定》:
- 10、浙江省环境保护厅《关于进一步加强建设项目固体废弃物环境管理的通知》 浙环发〔2009〕76号;
- 11、浙江省人民代表大会常务委员会公告第41号《浙江省大气污染防治条例》;
- 12、《关于印发建设项目竣工环境保护验收现场检查及审查要点的通知》(环办〔2015〕113号),2015年12月30日。

2.2 建设项目竣工环境保护验收技术规范

- 1、浙江省环境保护厅《浙江省环境保护厅建设项目竣工环境保护验收技术管理规定》:
- 2、《关于发布〈建设项目竣工环境保护验收暂行办法〉的公告》(国环规环评[2017]4号);
- 3、《建设项目竣工环境保护验收技术指南 污染影响类》(生态环境部公告 2018 年第 9 号), 2018 年 5 月 16 日;
- 4、《污染影响类建设项目重大变动清单(试行)》,环办环评函(2020)688号, 2020年12月。

2.3 建设项目环境影响报告表及其审批部门审批决定

- 1、浙江翠金环境科技有限公司《加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目环境影响报告表》,2024年6月;
- 2、嘉兴市生态环境局(秀洲) 嘉环秀建〔2024〕29 号。

2.4 其他相关文件

- 1、《工业企业废水氮、磷污染物间接排放标准》(DB 33/887-2013);
- 2、《污水综合排放标准》(GB 8978-1996):
- 3、《城镇污水处理厂主要水污染物排放标准》(DB33/2169-2018);
- 4、《城镇污水处理厂污染物排放标准》(GB18918-2002);
- 5、《污水排入城镇下水道水质标准》(GB/T 31962-2015);
- 6、《大气污染物综合排放标准》(GB16297-1996);
- 7、《工业涂装工序大气污染物排放标准》(DB33/2146-2018);
- 8、《锅炉大气污染物排放标准》(GB13271-2014);
- 9、《关于印发〈2020 年嘉兴市区大气污染质量攻坚方案〉的通知》(嘉生态示范市创「2020]34号);
- 10、《关于印发〈浙江省工业炉窑大气污染综合治理实施方案〉的通知》(浙环函[2019]315号);
- 11、《铸造工业大气污染物排放标准》(GB39726-2020);
- 12、《挥发性有机物无组织排放控制标准》(GB37822-2019);
- 13、《饮食业油烟排放标准(试行)》(GB18483-2001);
- 14、《工业企业厂界环境噪声排放标准》(GB 12348-2008);
- 15、《声环境质量标准》(GB3096-2008):
- 16、《固体废物鉴别标准通则》(GB 34330-2017);
- 17、《国家危险废物名录》(部令 第39号);
- 18、《一般工业固体废物贮存和填埋污染控制标准》(GB 18599-2020);
- 29、《危险废物贮存污染控制标准》(GB 18597-2023):
- 20、加西贝拉压缩机有限公司《加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测方案》;
- 21、嘉兴嘉卫检测科技有限公司检测报告 HJ240317。

3. 项目建设情况

3.1 地理位置及平面布置

3.1.1 地理位置

本公司建设项目位于嘉兴市秀洲区王店镇百乐路 256 号。项目具体地理位置 见图 3-1 和图 3-2。

图 3-1 项目地理位置图 1

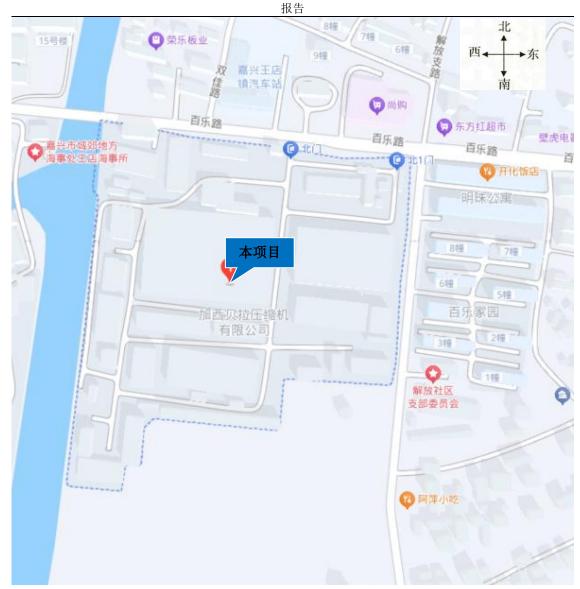


图 3-2 项目地理位置图 2

3.1.2 周边情况、平面布置和敏感点情况

加西贝拉压缩机有限公司位于嘉兴市秀洲区王店镇百乐路 256 号,经度 120°40′53.43″,纬度 30°437′8.64″。项目厂区平面布置及监测点位图见 图 3-3。

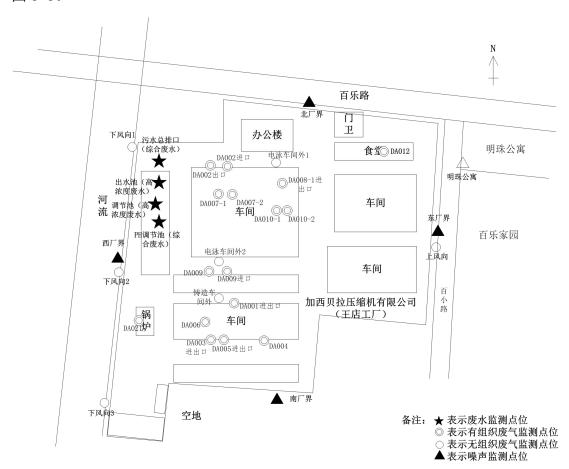


图 3-3 厂区平面布置及监测点位示意图

3.2 建设内容

3.2.1 项目建设情况

全厂总投资 10500 万元,冰箱压缩机生产线、自动化改造(含自动保压设备、吸油管自动压配机、机芯自动入壳(自制)),形成年产 600 万台冰箱压缩机生产能力。建设内容及规模一览表见表 3-1。

表 3-1 建设内容及规模一览表

工程类别		建设内容	备注	实际情况
主体	内装车间	年产 600 万台冰箱压缩机	新增 2 条压缩机内装线	
工程	外装车间	生产线、自动化改造(含自	新增 2 条压缩机外装线、新	与环评一
11年	77:农平四	动保压设备、吸油管自动压	增1 条电泳线	致
	机加工车间	配机、机芯自动入壳(自制))	新增 2 条曲轴箱加工线	

3.2.2 平面布置

3.2.2.1 厂区平面布置

总平面布置情况和项目环评基本一致。

3.2.3 产品概况

本公司产品方案见表 3-2。

表 3-2 企业产品概况统计表

广区	产品	现有产量	本项目环评新增	扩建后产量	2024年8月- 11月产量	折算年产量
一厂	压缩机	500 万台/年	600 万台/年	1100 万台/年	330	990

注: 以上数据由企业提供,详见附件。

3.2.4 生产设备

建设项目主体生产设备见表 3-3。

表 3-3 企业生产设备一览表

序号		名称		实际数量
1	机芯装配线	含线体及工装板、转子压装等专机设 备	2	2
2	 売缝焊接线 	含壳缝焊接机、弯管机、充气、检漏 水槽等及线体改造等	2	2
3	电泳烘干及真空干 燥线	包括干燥炉、废气处理装置、抽真空 设备,按年产 600 万套配置	1	1
4	注油测试包装线	含测试运行线、注油、包装等	2	2
5	壳体组件焊接线	改造脚板、接线柱、三管、保护器架、 上壳体支架和输送线等设备	2	2
		壳体焊前磷化清洗机	1	1
6	机械零件加工设备	曲轴箱加工线	1	1

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监 测报告

		珩磨机	2	2
		曲轴箱清洗机	2	2
		自动保压设备	1	1
7	设备自动化改造	吸油管自动压配机	3	3
		机芯自动入壳(自制)	1	1
8	其他设备	含悬挂链改造、搬运、包装等物流设 备及量检具等	1	1

注:以上数据由企业提供,详见附件。

3.3 主要原辅材料及燃料

建设项目主要原辅材料消耗量见表 3-4。

表 3-4 主要原辅料消耗一览表

农 5 主 工 文 添 福 行 市 元						
名称	单位	现有消 耗量	新増消 耗量	扩建后用消 耗量	2024年8月 -11月消耗 量	折算年消耗 量
压缩机壳体毛坯件	万套/a	500	600	1100	330	990
曲轴箱半成品	万套/a	500	600	1100	330	990
曲轴半成品	万套/a	500	600	1100	330	990
活塞半成品	万套/a	500	600	1100	330	990
阀板半成品	万套/a	500	600	1100	330	990
各类外协件	万套/a	500	600	1100	330	990
定子半成品(成型矽 钢片)	万套/a	500	600	1100	330	990
矽钢片	t/a	18000	21600	39600	11880	35640
漆包线	t/a	1500	1800	3300	990	2970
铜管	t/a	301	361.2	662. 2	198. 66	595. 98
电泳漆	t/a	50	60	110	33	99
乳化液	t/a	6	-5	1	0.3	0.9
清洗剂	t/a	30	36	66	19.8	59. 4
脱脂剂	t/a	12	14. 4	26. 4	7. 92	23. 76
防锈剂	t/a	20	24	44	13. 2	39. 6
磷化液	t/a	15	18	33	9. 9	29. 7
焊料	t/a	120	144	264	79. 2	237. 6
生铁	t/a	6500	0	6500	1950	5850
废钢	t/a	7500	0	7500	2250	6750
粘土砂	t/a	1000	0	1000	300	900
煤粉	t/a	90	0	90	27	81
陶土	t/a	750	0	750	225	675
钢丸	t/a	10	0	10	3	9
除渣剂	t/a	44	0	44	13. 2	39. 6
脱模剂	t/a	12	14. 4	26. 4	7.92	23. 76
冷冻油	t/a	700	840	1540	462	1386
机油	t/a	7	8. 4	15. 4	4.62	13. 86
	压缩机壳体 4	名称 单位 压缩机壳体毛坯件 万套/a 曲轴箱半成品 万套/a 活塞半成品 万套/a 商板半成品 万套/a 各类外协件 万套/a 定子半成品(成型砂钢片) 大/a 被包线 t/a 电泳漆 t/a 乳化液 t/a 点流剂 t/a 成胎剂 t/a 体化液 t/a 焊料 t/a 上砂 t/a 大/a 大/a 機粉 t/a 概为 t/a 解丸 t/a 麻渣剂 t/a 原衛剂 t/a 原衛剂 t/a 原濟剂 t/a 原流 t/a 表別 t/a 表別 t/a 表別 t/a 表別 t/a 表別 t/a 表別 </td <td>名称 单位 现有消耗量 压缩机壳体毛坯件 万套/a 500 曲轴箱半成品 万套/a 500 曲轴半成品 万套/a 500 活塞半成品 万套/a 500 各类外协件 万套/a 500 定子半成品(成型砂锅件) 万套/a 500 砂钢片 t/a 18000 漆包线 t/a 1500 铜管 t/a 301 电泳漆 t/a 50 乳化液 t/a 6 清洗剂 t/a 30 脱脂剂 t/a 12 防锈剂 t/a 12 防锈剂 t/a 15 焊料 t/a 120 生铁 t/a 6500 废钢 t/a 7500 粘土砂 t/a 90 陶土 t/a 10 除渣剂 t/a 44 脱模剂 t/a 12 冷冻油 t/a 700 机油 t/a 700</td> <td>名称 单位 现有消耗量 新增消耗量 压缩机壳体毛坯件 万套/a 500 600 曲轴箱半成品 万套/a 500 600 曲轴半成品 万套/a 500 600 酒塞半成品 万套/a 500 600 商板半成品 万套/a 500 600 各类外协件 万套/a 500 600 定子半成品(成型砂锅片) 万套/a 500 600 砂锅片 t/a 18000 21600 漆包线 t/a 1500 1800 铜管 t/a 301 361.2 电泳漆 t/a 50 60 乳化液 t/a 12 14.4 防锈剂 t/a 12 14.4 生铁 t/a 6500 0 成钢 t/a 7500 0 株土砂 t/a 750 0 内 t/a 10 0 原始 t/a 44 0 院稅 t/a<td>名称 単位 現有消耗量 新増消耗量 扩建后用消耗量 压缩机壳体毛坯件 万套/a 500 600 1100 曲轴箱半成品 万套/a 500 600 1100 曲軸半成品 万套/a 500 600 1100 活塞半成品 万套/a 500 600 1100 各类外协件 万套/a 500 600 1100 产半成品(成型砂锅片) 万套/a 500 600 1100 砂锅片 大/a 18000 21600 39600 漆包线 大/a 1500 1800 3300 铜管 大/a 301 361.2 662.2 电泳漆 大/a 50 60 110 乳化液 大/a 12 14.4 26.4 防锈剂 大/a 15 18 33 厚料 大/a <t< td=""><td> 全校 現有消 新増消 扩建后用消 記載 記載 記載 記載 記載 記載 記載 記</td></t<></td></td>	名称 单位 现有消耗量 压缩机壳体毛坯件 万套/a 500 曲轴箱半成品 万套/a 500 曲轴半成品 万套/a 500 活塞半成品 万套/a 500 各类外协件 万套/a 500 定子半成品(成型砂锅件) 万套/a 500 砂钢片 t/a 18000 漆包线 t/a 1500 铜管 t/a 301 电泳漆 t/a 50 乳化液 t/a 6 清洗剂 t/a 30 脱脂剂 t/a 12 防锈剂 t/a 12 防锈剂 t/a 15 焊料 t/a 120 生铁 t/a 6500 废钢 t/a 7500 粘土砂 t/a 90 陶土 t/a 10 除渣剂 t/a 44 脱模剂 t/a 12 冷冻油 t/a 700 机油 t/a 700	名称 单位 现有消耗量 新增消耗量 压缩机壳体毛坯件 万套/a 500 600 曲轴箱半成品 万套/a 500 600 曲轴半成品 万套/a 500 600 酒塞半成品 万套/a 500 600 商板半成品 万套/a 500 600 各类外协件 万套/a 500 600 定子半成品(成型砂锅片) 万套/a 500 600 砂锅片 t/a 18000 21600 漆包线 t/a 1500 1800 铜管 t/a 301 361.2 电泳漆 t/a 50 60 乳化液 t/a 12 14.4 防锈剂 t/a 12 14.4 生铁 t/a 6500 0 成钢 t/a 7500 0 株土砂 t/a 750 0 内 t/a 10 0 原始 t/a 44 0 院稅 t/a <td>名称 単位 現有消耗量 新増消耗量 扩建后用消耗量 压缩机壳体毛坯件 万套/a 500 600 1100 曲轴箱半成品 万套/a 500 600 1100 曲軸半成品 万套/a 500 600 1100 活塞半成品 万套/a 500 600 1100 各类外协件 万套/a 500 600 1100 产半成品(成型砂锅片) 万套/a 500 600 1100 砂锅片 大/a 18000 21600 39600 漆包线 大/a 1500 1800 3300 铜管 大/a 301 361.2 662.2 电泳漆 大/a 50 60 110 乳化液 大/a 12 14.4 26.4 防锈剂 大/a 15 18 33 厚料 大/a <t< td=""><td> 全校 現有消 新増消 扩建后用消 記載 記載 記載 記載 記載 記載 記載 記</td></t<></td>	名称 単位 現有消耗量 新増消耗量 扩建后用消耗量 压缩机壳体毛坯件 万套/a 500 600 1100 曲轴箱半成品 万套/a 500 600 1100 曲軸半成品 万套/a 500 600 1100 活塞半成品 万套/a 500 600 1100 各类外协件 万套/a 500 600 1100 产半成品(成型砂锅片) 万套/a 500 600 1100 砂锅片 大/a 18000 21600 39600 漆包线 大/a 1500 1800 3300 铜管 大/a 301 361.2 662.2 电泳漆 大/a 50 60 110 乳化液 大/a 12 14.4 26.4 防锈剂 大/a 15 18 33 厚料 大/a <t< td=""><td> 全校 現有消 新増消 扩建后用消 記載 記載 記載 記載 記載 記載 記載 記</td></t<>	全校 現有消 新増消 扩建后用消 記載 記載 記載 記載 記載 記載 記載 記

注:以上数据由企业提供,详见附件。

3.4 水源及水平衡

加西贝拉压缩机有限公司水源主要采用河水和自来水,企业废水主要为生活废水和生产废水。

根据加西贝拉压缩机有限公司 2024 年河水发票为 163461 吨,自来水发票 2024 年 1 月-2024 年 11 月发票,折算全年自来水用量为 12028 吨,根据水平衡 图,全厂年废水排放总量为 80072 吨。项目实施后水平衡情况详见图 3-4。

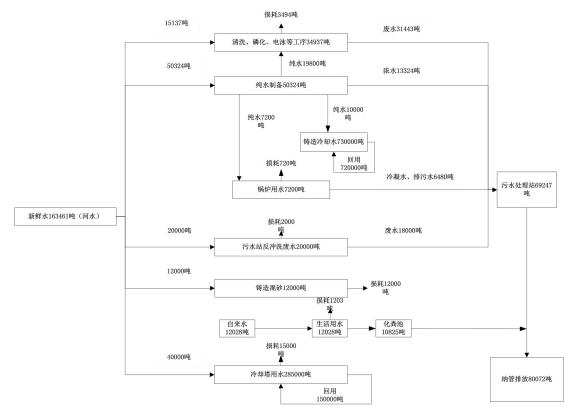


图 3-4 水平衡图

3.5 工艺流程

工艺流程图详见图 3-5 至图 3-16。

(1) 曲轴箱线工艺 铸造为现有生产工艺,本项目不涉及 颗粒物 生铁、 熔化 分选 抛丸 外协机加工 浇注 废钢 珩磨气缸孔 珩磨曲轴孔 废气 废乳化液 废乳化液 高压清洗 (热水) 烘干 ▶流入总装车间 废水 天然气

图 3-5 曲轴箱线工艺流程图

(2) 上壳体组件工艺

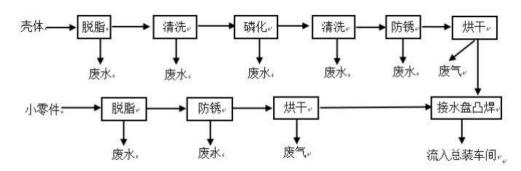


图 3-6 上壳体工艺流程图

(3) 下壳体组件工艺

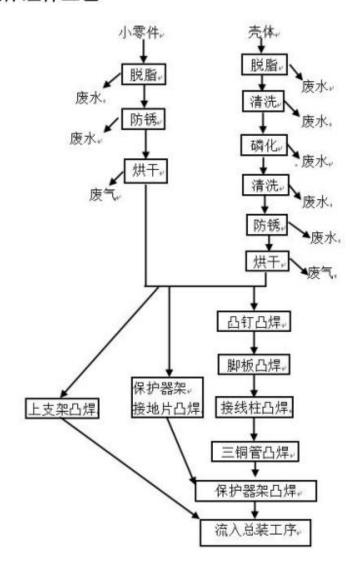


图 3-7 下壳体组件工艺流程图

(4) 曲轴线工艺

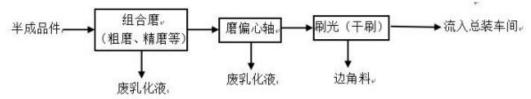


图 3-8 曲轴线工艺流程图

(5) 活塞线工艺

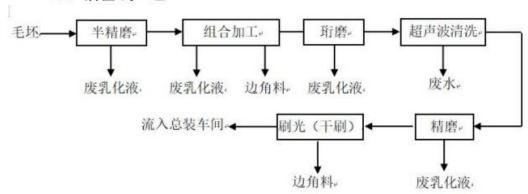


图 3-9 活塞线工艺流程图

图 3-10 阀板线流程图

(7) 总装工艺

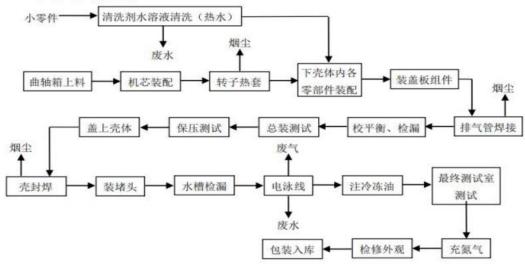


图 3-11 总装工艺流程图

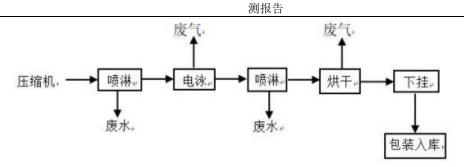


图 3-12 电泳线工艺流程图

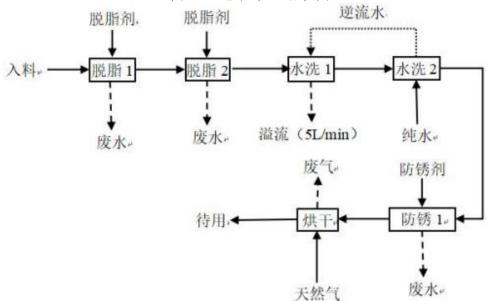


图 3-13 高压清洗工艺流程图

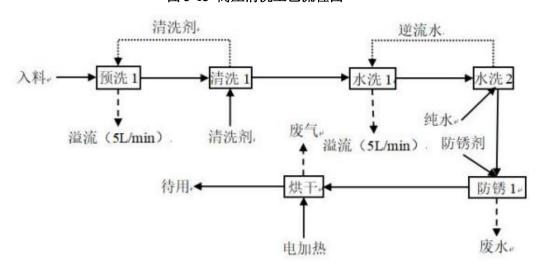


图 3-14 超声波清洗线工艺流程图

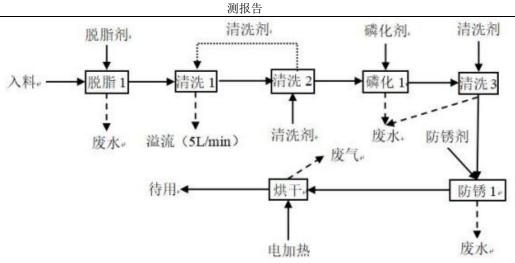


图 3-15 壳体清洗磷化工艺流程图

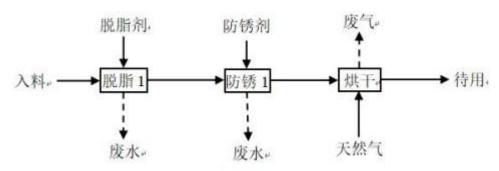


图 3-16 壳体小零件清洗线工艺流程图

3.6 项目变动情况

经现场调查确认,并根据《加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目项目环境影响报告表》及《污染影响类建设项目重大变动清单(试行)》环办环评函(2020)688号(2020年12月),全厂性质、规模、建设地点、生产工艺和环境保护措施均无重大变动。具体情况详见表 3-5。

表 3-12 污染影响类建设项目重大变动清单

类别	要求	实际情况	备注
性质	1.建设项目开发、使用功能发生变化的。	1.改扩建项目,与环评一致。	无变动,满足要求。
规模	2.生产、处置或储存能力增大 30%及以上的。 3.生产、处置或储存能力增大,导致废水第一类污染物排放量增加的。 4.位于环境质量不达标区的建设项目生产、处置或储存能力增大,导致相应污染物排放量增加的(细颗粒物不达标区,相应污染物为二氧化硫、氮氧化物、可吸入颗粒物、挥发性有机物; 臭氧不达标区,相应污染物为氮氧化物、挥发性有机物; 其他大气、水污染物因子不达标区,相应污染物为超标污染因子); 位于达标区的建设项目生产、处置或储存能力增大,导致污染物排放量增加 10%及以上的。	2.生产、处置或储存能力未增大。 3.未导致废水第一类污染物排放量增加。 4.未导致导致相应污染物排放量增加。	无变动,满足要求。
地点	5.重新选址;在原厂址附近调整(包括总平面布置变化)导致环境防护距 离范围变化且新增敏感点的。	5.建设地点为嘉兴市秀洲区王店镇百乐 路 256 号,与环评一致。	无变动,满足要求。
生产工艺	6.新增产品品种或生产工艺(含主要生产装置、设备及配套设施)、主要原辅材料、燃料变化,导致以下情形之一: (1)新增排放污染物种类的(毒性、挥发性降低的除外); (2)位于环境质量不达标区的建设项目相应污染物排放量增加的; (3)废水第一类污染物排放量增加的; (4)其他污染物排放量增加 10%及以上的。7.物料运输、装卸、贮存方式变化,导致大气污染物无组织排放量增加 10%及以上的。	6.未新增产品品种、生产工艺、主要原辅料,与环评一致。 7.物料运输、装卸、贮存方式无变化。	无变动,满足要求。
环境保护措施	8.废气、废水污染防治措施变化,导致第6条中所列情形之一(废气无组织排放改为有组织排放、污染防治措施强化或改进的除外)或大气污染物无组织排放量增加10%及以上的。 9.新增废水直接排放口;废水由间接排放改为直接排放;废水直接排放口位置变化,导致不利环境影响加重的。 10.新增废气主要排放口(废气无组织排放改为有组织排放的除外);主要排放口排气筒高度降低10%及以上的。 11.噪声、土壤或地下水污染防治措施变化,导致不利环境影响加重的。 12.固体废物利用处置方式由委托外单位利用处置改为自行利用处置的(自行利用处置设施单独开展环境影响评价的除外);固体废物自行处置方式变化,导致不利环境影响加重的。 13.事故废水暂存能力或拦截设施变化,导致环境风险防范能力弱化或降低的。	8.废水、废气污染防治措施与环评描述基本一致。 9.未新增废水直接排放口。 10.未新增废气主要排放口,排放口高度满足环评要求。 11.噪声防治满足环评要求;环评未对土壤及地下水有防治要求。 12.固体废物处置均满足固废法要求,且与环评要求一致,危险废物委托有资质单位处置,一般固废委托一般固废单位利用处置。 13.已按要求设置应急池并做好应急预案。	无变动,满足要求。

4. 环境保护设施

4.1 污染物治理/处置设施

4.1.1 废水

4.1.1.1 废水来源及排放去向

企业全厂主要废水为清洗、磷化、电泳等工序产生的废水,制备纯水产生的 浓水、锅炉冷凝水、排污水,污水站反冲洗废水,冷却水和生活污水。清洗、磷 化、电泳等工序产生的废水,制备纯水产生的浓水、锅炉冷凝水、排污水,污水 站反冲洗废水经污水站处理后和经化粪池处理的生活污水一起纳管排放,冷却水 循环使用不外排。废水来源及处理方式见表 4-1,废水处理工艺流程见图 4-1。

污水来源	污染因子	排放方 式	处理设施	排放去向
生活污水	化学需氧量、悬浮物、五日生化需氧 量、总磷、pH 值、氨氮、总氮	间歇	化粪池	嘉兴市污水管网
高浓度废水	化学需氧量、悬浮物、五日生化需氧量、阴离子表面活性剂、石油类、总磷、锰、pH 值、氨氮、总氮、色度	间歇	污水处理设施	嘉兴市污水管网
低浓度废水	化学需氧量、悬浮物、五日生化需氧量、阴离子表面活性剂、石油类、总磷、锰、pH 值、氨氮、总氮、色度	间歇	污水处理设施	嘉兴市污水管网
纯水制备浓 水	化学需氧量、悬浮物	间歇	污水处理设施	嘉兴市污水管网
喷淋废水	化学需氧量	间歇	污水处理设施	嘉兴市污水管网
锅炉排污、冷 凝水	化学需氧量、悬浮物	间歇	污水处理设施	嘉兴市污水管网
反冲洗废水	化学需氧量、悬浮物	间歇	污水处理设施	嘉兴市污水管网
冷却水	pH 值、化学需氧量、氨氮	间歇	/	循环使用, 不外排

表 4-1 污水来源及处理方式一览表

4.1.1.2 废水处理设施

依托现有,项目磷化、脱脂等高浓度槽液废水采用"隔油+沉淀除磷+酸化破乳+混凝沉淀"预处理后汇入综合废水,再经"沉淀+砂滤"处理后达标纳管;生活污水经化粪池预处理达标后纳管。全厂废水处理设施处理流程详见图 4-1。

废水处理工艺流程:

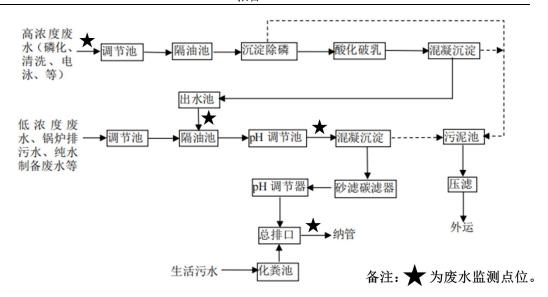


图 4-1 废水处理设施流程图

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测 报告

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测

污水处理设施

4.1.2 废气

从生产工艺流程分析,该项目产生的废气主要为电泳+烘干废气(1#)(DA002)、电泳+烘干废气(2#)(DA009)、壳封焊废气(1-2#)(DA008-1)、壳封焊废气(3-4#)(DA008-2)、电泳干燥炉废气1#(DA0010-1)、电泳干燥炉废气2#(DA0010-2)、熔化废气(DA001)、造型/浇注废气(以无组织形式排放)、落砂废气(DA003)、砂处理废气(DA004)、混砂废气(DA005)、清理废气(DA006)、曲轴箱清洗机干燥炉废气(1#-4#)(DA007-1-4)、食堂油烟(DA0012)和锅炉废气(DA0011)。

电泳+烘干废气(1#)(DA002)经TA002水喷淋+除湿+活性炭吸附后高空排放,电泳+烘干废气(2#)(DA009)经TA009水喷淋+除湿+活性炭吸附后高空排放,壳封焊废气(1-2#)(DA008-1)经收集后高空排放,壳封焊废气(3-4#)(DA008-2)TA008-2经过滤除尘净化后高空排放,电泳干燥炉废气1#(DA0010-1)、电泳干燥炉废气2#(DA0010-2)经收集后高空排放,熔化废气(DA001)TA001经布袋除尘器处理后高空排放,造型/浇注废气喷雾除尘后以无组织形式排放,落砂废气(DA003)经布袋除尘器处理后高空排放,砂处理废气(DA004)经布袋除尘器处理后高空排

放,混砂废气(DA005)经布袋除尘器处理后高空排放,清理废气(DA006)经布袋除尘器处理后高空排放,曲轴箱清洗机干燥炉废气(1#-4#)(DA007-1-4)经密闭收集后高空排放,食堂油烟(DA0012)经TA012油烟净化器处理后高空排放,天然气锅炉废气(DA0011)经密闭收集后安装低氮装置高空排放。

废气来源及处理方式见表4-2,废气处理设施流程图见图4-2。

表 4-2 各工段产生废气主要污染物汇总

ては	応 左に独田フ	排放	61 TH 1/L 1/c	排气筒高	排放
工序	废气污染因子	方式	处理设施	(米)	去向
电泳+烘干废气(1#)(DA002)	非甲烷总烃、臭气 浓度	间歇	水喷淋+除湿+ 活性炭吸附	15	环境
电泳+烘干废气(2#)(DA009)	非甲烷总烃、臭气 浓度	间歇	水喷淋+除湿+ 活性炭吸附	15	环境
壳封焊废气(1-2#)(DA008-1)	颗粒物	间歇	过滤除尘净化	15	环境
壳封焊废气(3-4#)(DA008-2)	颗粒物	间歇	过滤除尘净化	15	环境
电泳干燥炉废气 (DA0010-1)	颗粒物、二氧化硫、 氮氧化物	间歇	/	15	环境
电泳干燥炉废气 (DA0010-2)	颗粒物、二氧化硫、 氮氧化物	间歇	/	15	环境
熔化废气 (DA001)	颗粒物	间歇	布袋除尘器	15	环境
造型/浇注废气(以组织形式排放)	非甲烷总烃、颗粒 物	间歇	(以无组织形式 排放)	/	环境
落砂废气 (DA003)	颗粒物	间歇	布袋除尘器	15	环境
砂处理废气 (DA004)	颗粒物	间歇	布袋除尘器	15	环境
混砂废气 (DA005)	颗粒物	间歇	布袋除尘器	15	环境
清理废气 (DA006)	颗粒物	间歇	布袋除尘器	15	环境
曲轴箱清洗机干燥炉废气(1#-4#) (DA007-1-4)	颗粒物、二氧化硫、 氮氧化物	间歇	/	15	环境
食堂油烟 (DA0012)	油烟	间歇	油烟净化器	屋顶排放	环境
锅炉废气(DA0011)	颗粒物、二氧化硫、 氮氧化物	间歇	(已加装低氮 燃烧器)	15	环境

废气处理工艺流程:

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测

备注: 〇 为有组织废气监测点位。

图4-2 废气处理设施流程图

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测 报告

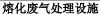
砂处理废气处理设施

曲轴箱废气处理设施

壳封焊废气处理设施

曲轴箱废气处理设施

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测



熔化废气处理设施

电泳+干燥废气处理设施DA009

电泳+干燥废气处理设施DA002

4.1.3 噪声

全厂的噪声污染主要来源于混砂机、抛丸机、曲轴箱加工线等机械设备。企业优先选用低噪声设备,设备上面安装减振装置;日常对设备进行维护和保养,生产时关闭门窗,避免产生异常噪声。采用以上措施来降低噪声污染。

4.1.4 固(液)体废物

企业产生的固体废弃物主要为废铅蓄电池(900-052-31)、废油(900-249-08)、 废包装材料(900-041-49)、废乳化液(含金属屑)(900-006-09)、废油桶 (900-249-08)、沉淀污泥(336-064-17)、滤渣(336-064-17)、含油污泥(900-200-08)、废过滤介质(900-041-49)、废活性炭(900-039-49)、漆渣(900-252-12)、离子交换树脂(900-015-13)、废试剂瓶(900-047-49)、废超滤膜(900-041-49)含油废抹布手套(900-041-49)、金属边角料、炉渣、集尘灰、废钢丸、生活垃圾、废滤膜。

全厂废铅蓄电池(900-052-31)委托嘉兴鸿泰环保科技有限公司处置,废油(900-249-08)委托杭州大地海洋环保股份有限公司处置,废包装材(900-041-49)、废乳化液(含金属屑)(900-006-09、废油桶(900-249-08)委托绍兴鑫杰环保科技有限公司处置,沉淀污泥(336-064-17)、滤渣(336-064-17)委托昱源宁海环保科技股份有限公司处置;含油污泥(900-200-08)委托慈溪市远达环保科技有限公司处置,废过滤介质(900-041-49)、废活性炭(900-039-49)、漆渣(900-252-12)、离子交换树脂(900-015-13)、废试剂瓶(900-047-49)、废超滤膜 900-041-49)含油废抹布手套(900-041-49)委托浙江春晖固废处理有限公司处置。

金属边角料、炉渣、集尘灰、废钢丸收集后外卖综合利用,生活垃圾委托当地环卫部门统一清运处置。固废产生情况及处置情况详见表 4-3。

2024年8月-11月实际 一般固废、危险固废污染物名称/代码 环评预估排放量 折算年排放量 排放量 滤渣 (336-064-17) 1.5 0.45 1.35 10.8 沉淀污泥 (336-064-17) 36 32.4 废活性炭(900-039-49) 1 0.3 0.9 废乳化液(含金属屑)(900-006-09) 25 7.5 22.5 含油污泥 (900-200-08) 19 5.7 17.1 废油 (900-249-08) 5.5 1.65 4.95 废包装材料 (900-041-49) 7 2.1 6.3 废油桶 (900-249-08) 2 0.6 1.8 漆渣 (900-252-12) 2.3 0.69 2.07 离子交换树脂 (900-015-13) 1 0.3 0.9 废铅蓄电池 (900-052-31) 0.1 0.03 0.09 废试剂瓶 (900-047-49) 0.2 0.06 0.18 废超滤膜 900-041-49) 0.5 0.15 0.45 废过滤介质 (900-041-49) 2 0.6 1.8 含油废抹布手套 (900-041-49) 2 0.6 1.8 金属边角料 50 15 45 720 炉渣 800 240 集尘灰 207 230 69 废钢丸 1.5 4.5 5 废砂 2000 600 1800

表 4-3 固体废物产生及处置情况汇总表

4.2 其他环境保护设施

4.2.1 环境风险防范设施

企业已制定应急措施并制定应急预案,备案号(314000-2024-060-L),防止 突发性事故对周围环境的影响。

4.2.2 规范化排污口、监测设施及在线监测装置

4.2.2.1 废水

企业废水为生活污水和生产废水。企业目前废水已安装在线监测装置。

4.2.2.2 废气

企业废气处理设施部分进口和出口设置有采样孔,孔径符合相应规范。

4.3 环保设施投资及"三同时"落实情况

4.3.1 环保设施投资

企业环保审批手续齐全。执行了国家环境保护"三同时"的有关规定,做到 了环保设施与项目同时设计,同时施工,同时投入运行

企业实际投资 10500 万元,其中环保投资 55 万元,占总投资的 0.52%。环保投资情况见表 4-4。

环保设施名称	实际投资(万元)
废水治理	0 (利用原有)
废气治理	55
噪声治理	0 (利用原有)
固废治理	0 (利用原有)
绿化	0 (利用原有)
其他	0 (利用原有)
合计	55

表 4-4 工程环保设施投资情况

4.3.2 "三同时"落实情况

环评要求	实际建设落实情况	备注
性质: 扩建项目	性质: 扩建项目	
规模:新增600万台压缩机	规模:新增 600 万台压缩机	已落实。
建设地址: 嘉兴市秀洲区王店镇百乐路 256 号	建设地址: 嘉兴市秀洲区王店镇百乐路 256 号	
废水:要求企业厂区执行雨污分流,污水经预处理后全部 达标纳管排放,不排入附近水体。 项目清洗废水采用混凝沉淀工艺处理后纳管排放;纯水制 备浓水直接纳管排放;生活污水经化粪池预测达标后纳管排放。 现企业测试废水经过管道降温后纳管排放。	废水:企业已实行雨污分流、清污分流。清洗废水经混凝沉淀处理后纳管排放,纯水制备浓水直接纳管排放,测试废水经自然冷却后纳管排放,厕所废水经化粪池处理后和其他生活废水一起纳管排放,最终经嘉兴市联合污水处理有限责任公司处理后排海。企业废水入管网口污染物 pH、化学需氧量、石油类、阴离子表面活性剂、五日生化需氧量、石油类、总锰和悬浮物浓度日均值(范围)均低于《污水综合排放标准》(GB 8978-1996)表4三级标准,氨氮、总磷浓度日均值均低于《工业企业废水氮、磷污染物间接排放标准》(DB 33/887-2013)表1排放限值,总氮浓度日均值均低于《污水排入城镇下水道水质标准》(GB/T 31962-2015)表1标准。	已落实。
废气:有组织废气:要求企业 DA001 (熔化废气) 经布袋除尘处理后于 15 米高排气筒排放,DA003 (落砂) 经布袋除尘处理后于 15 米高排气筒排放,DA004 (砂处理废气) 15 米高排气筒排放,DA005 (混砂废气) 经布袋除尘处理后于 15 米高排气筒排放,DA006 (清理 (抛丸) 废气) 经布袋除尘处理后于 15 米高排气筒排放,DA006 (清理 (抛丸) 废气) 经布袋除尘处理后于 15 米高排气筒排放,DA002 (1#电泳+烘干废气) 经"水喷淋+除湿+活性炭吸附"组合工艺处理后于 15 米高排气筒排放,DA009 (2#电泳+烘干废气) 经"水喷淋+除湿+活性炭吸附"组合工艺处理后于 15 米高排气筒排放,DA008 (壳封焊废气),经机械除尘处理后于 15 米高排气筒排放,DA008 (壳封焊废气),经机械除尘处理后于 15 米高排气筒排放,DA010 (电泳干燥炉废气)于 15m 高排气筒排放,DA011 (锅炉废气)加装低氮燃烧器于 15m 高排气筒排放。DA012 (食堂油 烟) 经油烟净化器处理后于屋顶排放。无组织废气:①除尘器灰仓卸灰不应直接卸落到地面,卸灰口应采取密闭。除尘灰采取密闭措施收集、存放和运输;②严格控制工业炉窑生产工艺过程及相关物料储存、输送等无组织排放,在保障生产安全的前提下,采取密闭、封闭等有效措施,有效提高废气收集率,产尘点及车间不得有可见烟粉尘外逸。③将含 VOCs 等物料密闭储存,转移和运输采用密闭容器,采用密闭管道输送,控制 VOCs 等的无组织排放。④铸造车间采用喷雾除尘。	废气:企业DA001 (熔化废气) 经布袋除尘处理后于15 米高排气筒排放,DA003 (落砂) 经布袋除尘处理后于15 米高排气筒排放,DA004 (砂处理废气) 15 米高排气筒排放,DA005 (混砂废气) 经布袋除尘处理后于15 米高排气筒排放,DA006 (清理(抛丸)废气) 经布袋除尘处理后于15 米高排气筒排放,DA006 (清理(抛丸)废气) 经布袋除尘处理后于15 米高排气筒排放,DA009 (2#电泳+烘干废气) 经"水喷淋+除湿+活性炭吸附"组合工艺处理后于15 米高排气筒排放,DA009 (2#电泳+烘干废气) 经"水喷淋+除湿+活性炭吸附"组合工艺处理后于15 米高排气筒排放,DA008 (壳封焊废气),经机械除尘处理后于15 米高排气筒排放,DA007 (曲轴箱清洗机干燥炉废气)于15m 高排气筒排放,DA010 (电泳干燥炉废气)于15m 高排气筒排放,DA011 (锅炉废气) 已加装低氮燃烧器于15m 高排气筒排放,DA012 (食堂油 烟)经油烟净化器处理后于屋顶排放。①除尘器卸灰口采取密闭。②严格控制工业炉窑生产工艺过程及相关物料储存、输送等无组织排放,在保障生产安全的前提下,采取密闭、封闭等有效措施率。③将含 VOCs 等物料密闭储存,转移和运输采用密闭容器,采用密闭管道输送。④铸造车间采用喷雾除尘。全厂DA001 (熔化废气)、DA003 (落砂)、DA004 (砂处理废气)、DA005 (混砂废气)、DA006 (清理(抛丸)废气)污染物低浓度颗粒物浓度均低于《铸造工业大气污染物排放标准》(GB39726-2020)中表1大气污染物排放限值。DA002 (1#电泳+烘干废气)、DA009 (2#电泳+烘干废气)污染物非甲烷总烃、臭气浓度浓度均低于《下工业涂装工序大气污染物排放标准》(DB33/2146-2018)表2大气污染物特别排放限值。DA008 (壳封焊废气)污染物低浓度颗粒物浓度及排放速率均低于《大气污染物综合排放标准》(GB16297-1996)表2中的二级标准。DA007 (曲轴箱清洗机干燥炉废气)、DA010 (电泳干燥炉废气)污染物 So₂、Nox、颗粒物浓度均低于《关于印发<浙江省工业炉窑大气污染综合治理实施方案〉的通知》(浙环函[2019]315号)中的限值要求(颗粒物、二氧化硫、氮氧化物排放限值分别不高于30、200、300毫克/	己落实。

噪声:①设备购置时采用高效低噪设备;②高噪声设备加 装减振基础,减少噪声外扬;③加强管理,日常密闭操作,门 窗紧闭,尽可能减少噪声外扬。	立方米)。DA011(锅炉废气)污染物 S02、颗粒物浓度均低于《锅炉大气污染物排放标准》(GB13271-2014)表 3 大气污染物特别排放限值,N0x 浓度均低于执行"《关于印发〈2020年嘉兴市区大气污染质量攻坚方案〉的通知》(嘉生态示范市创[2020]34号)要求"。DA012(食堂油烟)污染物油烟均低于《饮食业油烟排放标准(试行)》(GB18483-2001)中的标准要求。 厂界无组织污染物非甲烷总烃、臭气浓度浓度均低于《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中表 6 企业边界大气污染物浓度限值,颗粒物浓度均低于《大气污染物综合排放标准》(GB16297-1996)表 2 中的无组织排放监控浓度限值。 厂区内无组织污染物非甲烷总烃浓度均低于《挥发性有机物无组织排放控制标准》(GB37822-2019)表 A.1 厂区内 VOCs 无组织排放限值中的特别排放限值,颗粒物浓度均低于《铸造工业大气污染物排放标准》(GB39726-2020)表 A.1 厂区内颗粒物无组织排放限值。 噪声:企业优先选用低噪声设备,设备上面安装减振装置;日常对设备进行维护和保养,避免产生异常噪声。 该项目东、南、西、北厂界二日的昼、夜间噪声均达到《工业企业厂界环境噪声排放标准》(GB 12348-2008)3 类标准。敏感点噪声昼、夜间噪声均达到《声环境质量标准》(GB 3096-2008)3 类标准	己落实。
固体废物:一般固废金属边角料、炉渣、集尘灰、废钢丸、废砂、废滤膜综合利用落实措施,固废做好收集处置工作,实现零排放。危险废物滤渣、废乳化液(含金属屑)、废油、含油污泥、沉淀污泥、漆渣、废活性炭、离子交换树脂、废铅蓄电池、废包装材料、废油桶、含油废抹布和手套、废试剂瓶安全暂存,委托有资质的单位进行安全处置。	固体废物:全厂废铅蓄电池(900-052-31)委托嘉兴鸿泰环保科技有限公司处置,废油(900-249-08)委托杭州大地海洋环保股份有限公司处置,废包装材料(900-041-49)、废乳化液(含金属屑)(900-006-09、废油桶(900-249-08)委托绍兴鑫杰环保科技有限公司处置,沉淀污泥(336-064-17)、滤渣(336-064-17)委托昱源宁海环保科技股份有限公司处置;含油污泥(900-200-08)委托慈溪市远达环保科技有限公司处置,废过滤介质(900-041-49)、废活性炭(900-039-49)、漆渣(900-252-12)、离子交换树脂(900-015-13)、废试剂瓶(900-047-49)、废超滤膜 900-041-49)含油废抹布手套(900-041-49)委托浙江春晖固废处理有限公司处置。金属边角料、炉渣、集尘灰、废钢丸收集后外卖综合利用,生活垃圾委托当地环卫部门统一清运处置。	已落实。
总量控制:企业总量控制指标:废水排放量 98922 吨/年,化学需氧量 4.946 吨/年,氨氮 0.495 吨/年,颗粒物 34.797 吨/年,二氧化硫 0.010 吨/年,氮氧化物 0.160 吨/年,V0Cs3.550吨/年。	总量控制:企业全厂废水排放总量废水排放总量为80072吨/年,化学需氧量排放量为4.00吨/年,氨氮排放量为0.400吨/年,颗粒物排放量为1.971吨/年,二氧化硫排放量为0.01吨/年,氮氧化物排放量为0.064吨/年,VOCS排放量为2.943吨/年,低于项目总量控制指标	己落实。
土壤及地下水污染防治措施:①源头控制:电泳漆、矿物油等物质的储存及输送过程应保障包装容器具有相应的耐腐蚀、耐压、密封性能,避免渗漏或泄漏。②防渗控制:危废贮存设施应满足《危险废物贮存污染控制标准》中防腐防渗要求。电泳漆、矿物油等原辅料储存区、备料车间等应采取防渗措施,	土壤及地下水污染防治措施、环境风险防范措施:企业厂区内地面均采用混凝土硬化,厂房内均采用环氧地面。 厂区污水管道、化粪池、隔油池等污水处理设施各构筑物根据设计采取了防腐防渗措施。 危化品仓库和危废仓库地面均做好了防腐、防渗、防泄漏、防雨淋措施,门口设置了导 排沟。	已落实。

防渗性能应满足国家和地方标准、防渗技术规范要求。③渗漏、泄漏检测:管道等应配置泄漏、渗漏检测装置,并定期进行检查和维护。

生态保护措施:①做好项目绿化工作,减小对周围环境的影响。②做好外排水的达标排放工作,以减少对纳污河段水质的影响。③做好噪声的达标排放工作,减少对周围声学环境的影响。④妥善处置固体废物,杜绝二次污染。⑤做好废气的达标排放工作,减少其对周围环境的影响,保护员工的身体健康。

环境风险防范措施: ①企业在厂区按要求设置消防栓, 配 备足够的防火灭火器材,发生火灾、爆炸事故时,第一时间加 以控制,不会发生大面积的火灾事件;②原辅料储存区、生产 装置区、固体废物堆存区、污水站的防渗要求,应满足国家和 地方标准、防渗技术规范要求: ③危废仓库按规范建设, 做到 "三防"要求: ④企业投产后按要求编制应急预案,按要求设 置事故应急池,以容纳事故消防废水以及发生事故时可能进入 该系统的生产废水量:⑤根据《国务院安委会办公室 生态环境 部 应急管理部〈关于进一步加强环保设备设施安全生产工作 的通知>》(安委办明电[2022]17号)及《浙江省应急管理厅 浙 江省生态环境厅〈关于加强工业企业环保设施安全生产工作的 指导意见〉》(浙应急基础[2022]143号)要求,企业环保设施 与主体工程必须同时按照安全生产要求进行设计,各项环保设 施设计应当由具有环保设施工程设计资质的单位承担,经科学 论证,并经验收合格后方可正式投入使用。对重点环保设施开 展安全风险辨识。

其他环境管理要求:①建立健全企业环保规章制度和企业环境管理责任体系。②建立环保台账,记录每日的废水、废气处理设施运行情况,确保污染物稳定达标排放;制定危险废物管理计划并报生态环境部门备案,如实记录危险废物贮存、利用处置相关情况。③落实日常环境管理和污染源监测工作。④按要求完成自主验收。

分区防渗:厂区基本都做好了场地防渗,对地下水、土壤给存在污染风险的区域主要为 产生废水区域,该区域均在厂房内部,厂房内地面采用环氧地面,切排水沟均已做好防渗措 施, 故不会对地下水、土壤产生污染。 其他环境管理要求:已做好排污许可证变更。 己落实。 已严格按照环评提出的各项要求落实污染治理设施和措施。

5. 环境影响报告表主要结论与建议及其审批部门审批决定

5.1 环境影响报告表主要结论与建议

项目实施过程中,企业应加强环境质量管理,认真落实环境保护措施,采取相应的污染防治措施,能使废水、废气、噪声达标排放,固废得到安全处置,则本项目的建设对环境影响较小,能基本维持当地环境质量现状。因此项目建设从环保角度来说是可行的。

5.2 审批部门审批决定

嘉兴市生态环境局嘉环秀建(2024)29号对本项目进行审批受理, 内容如下:

关于嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目环境影响报告 表的审查意见

加西贝拉压缩机有限公司:

你公司《关于要求对嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目环境影响报告表进行审批的函》及其它相关材料收悉。根据《中华人民共和国环境影响评价法》等相关环保法律法规,经研究,现将我局审查意见函告如下:

- 一、根据你公司委托浙江翠金环境科技有限公司编制的《嘉兴加西贝拉压缩 机有限公司未来工厂建设技术改造项目环境影响报告表》(以下简称《环境影响 报告表》)和其它上报的材料,以及本项目环评行政许可公示意见反馈情况,在 项目符合产业政策与产业发展规划、选址符合区域土地利用等相关规划的前提下, 原则同意《环境影响报告表》结论。项目经投资主管部门依法审批后,你公司须 严格按照《环境影响报告表》所列建设项目的性质、规模、地点、环保对策措施 及要求实施项目建设。
- 二、公司投资 10565 万元,利用嘉兴市秀洲区王店镇百乐路 256 号现有厂房和公用设施,新建 2 条冰箱压缩机生产线,并对现有设备进行自动化改造。项目实施后,可实现新增压缩机产能 600 万台/年。
- 三、项目须采用先进工艺、技术和装备,提高自动化控制水平。实施清洁生产,加强生产全过程管理,强化综合利用,降低能耗物耗,减少各种污染物产生量和排放量,并重点做好以下工作:
 - (一) 加强废水污染防治。项目实行清污分流、雨污分流。磷化、脱脂等高

浓度槽液废水经厂内污水处理站预处理后与经化粪池预处理的生活污水达标纳入市政污水管网,最终经嘉兴市联合污水处理厂处理达标后深海排放。污染物入网标准执行《污水综合排放标准》(GB8978-1996)表4中的三级标准,其中氨氮、总磷入网标准执行《工业企业废水氮、磷污染物间接排放限值》(DB33/887-2013)。不得另设排污口。

- (二)加强废气污染防治。严格按照《环境影响报告表》要求,根据废气特点采取针对性污染防治措施,确保废气达标排放。熔化、落砂、砂处理、混砂、抛丸废气分别经布袋除尘处理后于 15 米高排气筒排放。锅炉废气经低氮燃烧器后于 15m 高排气筒排放。电泳+烘干废气经"水喷淋+除湿+活性炭吸附"处理后于 15 米高排气筒排放。壳封焊废气经机械除尘处理后于 15 米高排气筒排放。曲轴箱清洗机干燥炉废气、电泳干燥炉废气分别经 15m 高排气筒排放。废气排放满足《铸造工业大气污染物排放标准》(GB39726-2020)、《工业涂装工序大气污染物排放标准》(DB33/2146-2018)、《大气污染物综合排放标准》(GB16297-1996)、《锅炉大气污染物排放标准》(GB13271-2014)、《关于印发〈浙江省工业炉窑大气污染综合治理实施方案〉的通知》(浙环函[2019]315 号)、《关于印发〈2020年嘉兴市区大气污染质量攻坚方案〉的通知》(嘉生态示范市创[2020]34 号)《挥发性有机物无组织排放控制标准》(GB37822-2019)等相关标准。
- (三)加强噪声污染防治。合理设计厂区平面布局,选用低噪声设备。采取各项噪声污染防治措施,确保厂界噪声达到《工业企业厂界环境噪声排放标准》(GB12348-2008)中的3类标准。
- (四)加强固废污染防治。按照"资源化、减量化、无害化"处置原则,建立台账制度,规范设置废物暂存库,危险废物和一般固废分类收集、堆放、分质处置,实现资源的综合利用。需委托处置的危险废物必须委托有相应危废处理资质且具备处理能力的单位进行处置。对委托处置危险废物的必须按照有关规定办理危险废物转移报批手续,严格执行危险废物转移联单制度。危险废物厂内暂存严格按《危险废物贮存污染控制标准》(GB18597-2023)中的有关规定执行。严禁委托无危险货物运输资质的单位运输危险废物,严禁委托无相应危废处理资质的个人或单位处置危险废物,严禁非法排放、倾倒、处置危险废物。

四、严格落实污染物排放总量控制措施及排污权交易制度。按照《环境影响

报告表》结论,本项目实施后,企业主要污染物总量控制指标为: CODcr6. 533 吨/年, NH_3 -NO. 463 吨/年, SO_2O . 012 吨/年, NO_x5 . 54 吨/年,颗粒物 36. 221 吨/年,VOCs4. 831 吨/年。

五、根据《中华人民共和国环境影响评价法》等相关法律法规的规定,若项目的性质、规模、地点、采用的生产工艺或者防治污染、防止生态破坏的措施发生重大变动的,应依法重新报批项目环评文件。自批准之日起超过5年方决定该项目开工建设的,其环评文件应当报我局重新审核。在项目建设、运行过程中产生不符合经审批的环评文件情形的,应依法办理相关环保手续。

以上意见和《环境影响报告表》中提出的各项污染防治和风险防范措施,你公司应在项目设计、建设、运行和管理中认真予以落实,确保项目建设运营过程中的环境安全和社会稳定。严格落实环保设施安全管理主体责任,将环保设施安全落实到生产经营工作全过程各方面。开展包含废水、废气、危废贮存库等环保治理设施作为风险源的风险辨识。各项环保设施设计应当由具有环保设施工程设计资质的单位承担,经科学论证,并经验收合格后方可投入使用。遵守《排污许可管理条例》,在启动生产设施或者发生实际排污之前申请取得排污许可证或者填报排污报告表,并按规定排污。严格执行环保"三同时"制度,落实法人承诺,建设项目竣工后,建设单位应当按规定对配套建设的环境保护设施进行验收,并依法向社会公开验收报告(国家规定需要保密的除外)。建设项目配套建设的环境保护设施经验收合格,方可投入生产或者使用。

你单位对本审批决定有不同意见,可在接到本决定书之日起六十日内向嘉兴市人民政府申请行政复议,也可在六个月内依法向所在地人民法院起诉。

6. 验收执行标准

6.1 废水执行标准

该项目污染物执行《污水综合排放标准》(GB 8978-1996)表 4 三级标准,其中氨氮、总磷执行《工业企业废水氮、磷污染物间接排放标准》(DB 33/887-2013)表 1 间接排放限值,总氮执行《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 标准。具体标准值间表 6-1。

77 - 2003 - 713 Parie							
污染物	排放标准值 (mg/L)	引用标准					
pH 值(无量纲)	6-9						
石油类	20						
阴离子表面活性剂	20						
五日生化需氧量	300	《污水综合排放标准》(GB 8978-1996)表 4					
色度	/	三级标准					
总锰	5						
悬浮物	400						
化学需氧量	500						
氨氮	35	《工业企业废水氮、磷污染物间接排放标准》(DB					
总磷	8	33/887-2013) 表 1 间接排放限值					
总氮	70	《污水排入城镇下水道水质标准》(GB/T					
	10	31962-2015)表1标准					

表 6-1 废水执行标准

6.2 废气执行标准

6.2.1 有组织废气

该项目有组织废气 DA001(熔化废气)、DA003(落砂)、DA004(砂处理废气)、DA005(混砂废气)、DA006(清理(抛丸)废气)污染物颗粒物浓度执行《铸造工业大气污染物排放标准》(GB39726-2020)中表 1 大气污染物排放限值。DA002(1#电泳 +烘干废气)、DA009(2#电泳+烘干废气)污染物非甲烷总烃、臭气浓度浓度执行《工业涂装工序大气污染物排放标准》(DB33/2146-2018)表 2 大气污染物特别排放限值。DA008(壳封焊废气)污染物颗粒物浓度及排放速率执行《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级标准。DA007(曲轴箱清洗机干燥炉废气)、DA010(电泳干燥炉废气)污染物 SO₂、NOx、颗粒物浓度执行《关于印发〈浙江省工业炉窑大气污染综合治理实施方案〉的通知》(浙环函[2019]315 号)中的限值要求(颗粒物、二氧化硫、氮氧化物排放限值分别不高于 30、200、300毫克/立方米)。DA011(锅炉废气)污染物 SO₂、颗粒物浓度执

行《锅炉大气污染物排放标准》(GB13271-2014)表 3 大气污染物特别排放限值,N0x 浓度执行"《关于印发〈2020 年嘉兴市区大气污染质量攻坚方案〉的通知》(嘉生态示范市创[2020]34号)要求"。DA012(食堂油烟)污染物油烟浓度执行《饮食业油烟排放标准(试行)》(GB18483-2001)中的标准要求。标准限值见表 6-2。

排放口	污染物	最高允许排放 浓度(mg/m³)	排气筒高 度(米)	允许排放 速(kg/h)	标准来源
DA001 (熔化废 气)	颗粒物	30	/	/	
DA003 (落砂)	颗粒物	30	/	/	
DA004(砂处理 废气)	颗粒物	30	/	/	《铸造工业大气污染物排放标准》 (GB39726-2020)中表1大气污染
DA005 (混砂废 气)	颗粒物	30	/	/	物排放限值。
DA006 (清理 (抛丸) 废气)	颗粒物	30	/	/	
DA002 (1#电泳	非甲烷总烃	60	/	/	《工业涂装工序大气污
+烘干废气)	臭气浓度	800	/	/	染物排放标准》
DA009 (2#电泳	非甲烷总烃	60	/	/	(DB33/2146-2018)表 2 大气污染
+烘干废气)	臭气浓度	800	/	/	物特别排放限值
DA008 (売封焊 废气)	颗粒物	120	15	3. 5	《大气污染物综合排放标准》 (GB16297-1996)表2中的二级标准
DA007(曲轴箱	二氧化硫	200	/	/	《关于印发〈浙江省工业炉窑大气
清洗机干燥炉	氮氧化物	300	/	/	污染综合治理实施方案>的通知》
废气)	颗粒物	30	/	/	(浙环函[2019]315 号)中的限值
 DA010(电泳干	二氧化硫	200	/	/	要求(颗粒物、二氧化硫、氮氧化
燥炉废气)	氮氧化物	300	/	/	物排放限值分别不高于 30、200、
が形ががく	颗粒物	30	/	/	300 毫克/立方米)
DA011 (锅炉废 气)	氮氧化物	50	/	/	《关于印发<2020 年嘉兴市 区大气污染质量攻坚方案>的通知》 (嘉生态示范市创[2020]34 号)要 求执行

表 6-2 有组织废气污染物排放标准

6.2.2 无组织废气

氧化硫

颗粒物

油烟

50

20

2.0

气)

DA012(食堂油

烟)

厂界无组织污染物非甲烷总烃、臭气浓度浓度均低于《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中表 6 企业边界大气污染物浓度限值,颗粒物浓度均低于《大气污染物综合排放标准》(GB16297-1996)表 2 中的无组织排放监控浓度限值。

/

《锅炉大气污染物排放标准》

特别排放限值

《饮食业油烟排放标准(试行)》

(GB18483-2001) 中的标准要求

(GB13271-2014) 表 3 大气污染物

厂区内无组织污染物非甲烷总烃浓度均低于《挥发性有机物无组织排放控制标准》(GB37822-2019)表 A.1厂区内 VOCs 无组织排放限值中的特别排放限值,

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测报告

颗粒物浓度均低于《铸造工业大气污染物排放标准》(GB39726-2020)表 A. 1 厂区内颗粒物无组织排放限值。具体标准值见表 6-3。

表 6-3 无组织废气排放标准

污染物	平均时段	无组织监控点浓度限值 (mg/m³)	引用标准
北田岭首叔	厂房外设置监控点(厂区内) 1h 平均浓度限值	6. 0	《挥发性有机物无组织排放控制
非甲烷总烃	厂房外设置监控点(厂区内) 任意一次浓度值	20	「 标准》(GB 37822−2019)附录 A 特别排放限值
颗粒物	厂界标准	4. 0	《大气污染物综合排放标准》(GB 16297-1996)表 2 无组织排放监控 浓度限值
非甲烷总烃) 分个小作	1.0	《工业涂装工序大气污染物排放
臭气浓度		20(无量纲)	标准》(DB33/2146-2018)中表 6 企业边界大气污染物浓度限值

6.3 噪声执行标准

该项目东、南、西、北厂界噪声执行 GB12348-2008《工业企业厂界环境噪声排放标准》3 类标准。敏感点噪声执行声环境质量标准《GB 3096-2008》2 类标准,执行标准见表 6-4。

表 6-4 厂界噪声执行标准

监测对象	项目	单位	限值		引用标准
东、南、北、西 厂界	等效 A 声级	dB(A)	65(昼间)	55 (夜间)	GB12348-2008《工业企业厂界环境 噪声排放标准》3 类标准
明珠公寓	等效 A 声级	dB(A)	60(昼间)	50 (夜间)	《声环境质量 GB 3096-2008》噪 声 2 类标准

6.4 固废参照标准

固体废弃物属性判定依据《国家危险废物名录》。一般固体废弃物的排放执行 GB 18597-2023《危险废物贮存污染控制标准》、GB 18599-2020《一般工业固体废物贮存和填埋污染控制标准》和《中华人民共和国固体废物污染环境防治法》(2020年修订)中的有关规定。

6.5 总量控制指标

根据《加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目环境影响报告表》,企业总量控制指标:废水排放量 98922 吨/年,化学需氧量 4.946 吨/年,氨氮 0.495 吨/年,颗粒物 34.797 吨/年,二氧化硫 0.010 吨/年,氮氧化物 0.160 吨/年, VOCs3.550 吨/年。

7. 验收监测内容

7.1 环境保护设施调试效果

根据试生产期间的调试运行情况,全厂环保治理设施均能正常运行。竣工验收废水、废气、噪声监测数据能达到相关排放标准。具体检测内容如下:

7.1.1 废水

项目废水监测内容及频次见表 7-1, 废水监测点位图详见图 3-3。

*** - 2011 - 2011				
监测点位	污染物名称	监测频次		
调节池	pH值、化学需氧量、氨氮、总磷、总氮、五日生化需氧量、	监测2天,每天4次		
(高浓度废水)	悬浮物、石油类、色度、阴离子表面活性剂、总锰	□ 血侧 2 八, 母八 4 八		
出水池	pH值、化学需氧量、氨氮、总磷、总氮、五日生化需氧量、	监测2天,每天4次		
(高浓度废水)	悬浮物、石油类、色度、阴离子表面活性剂、总锰	□ 血侧 2 八, 母八 4 八		
pH 调节池	pH值、化学需氧量、氨氮、总磷、总氮、五日生化需氧量、	监测2天,每天4次		
(综合废水)	悬浮物、石油类、色度、阴离子表面活性剂、总锰	国侧 2 大,母大 4 (人		
污水总排口	pH值、化学需氧量、氨氮、总磷、总氮、五日生化需氧量、	监测2天,每天4次		
(综合废水)	悬浮物、石油类、色度、阴离子表面活性剂、总锰	置侧 2 大,母大 4 八		

表 7-1 废水监测内容及频次

7.1.2 废气

废气监测内容频次详见表 7-2, 废气监测点位图详见图 3-3。

监测对象	污染物名称	工序	监测点位	监测频次	
	颗粒物	熔化	熔化废气进口		
	低浓度颗粒物	熔化	熔化废气(DA001)出口		
	颗粒物	落砂	落砂进口		
	低浓度颗粒物	落砂	落砂 (DA003) 出口		
	低浓度颗粒物	砂处理	砂处理 (DA004) 出口		
	颗粒物	混砂	混砂进口		
	低浓度颗粒物	混砂	混砂 (DA005) 出口		
	低浓度颗粒物	清理(抛丸)	清理(抛丸) (DA006) 废		
	以代及秋粒初	相连(地元)	气出口		
	颗粒物	壳封焊	壳封焊进口		
 有组织排放	低浓度颗粒物	壳封焊	壳封焊(DA008-1)出口	 监测 2 天, 每天	
废气	非甲烷总烃	1#电泳+烘干	1#电泳+烘干进口	3次	
	非甲烷总烃、臭气浓度	1#电泳+烘干	1#电泳+烘干出口(DA002)		
	非甲烷总烃	2#电泳+烘干	2#电泳+烘干进口		
	非甲烷总烃、臭气浓度	2#电泳+烘干	2#电泳+烘干出口(DA009)		
	低浓度颗粒物、二氧化硫、	 电泳干燥炉(1#)	电泳干燥炉(1#)		
	氮氧化物	电机 / 殊》(1冊)	(DA010-1) 出口		
	低浓度颗粒物、二氧化硫、	 电泳干燥炉(2#))	电泳干燥炉(2#)		
	氮氧化物	七が 「然か (2冊))	(DA010-2) 出口		
	低浓度颗粒物、二氧化硫、	锅炉	锅炉排放口(DA021)		
	氮氧化物				
	低浓度颗粒物、二氧化硫、	曲轴箱清洗机干	曲轴箱清洗机干燥炉		
	氮氧化物	燥炉(1#)	(DA007-1) (1#) 出口		

表 7-2 废气监测内容及频次

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测 报告

	低浓度颗粒物、二氧化硫、 氮氧化物	曲轴箱清洗机干 燥炉(2#)	曲轴箱清洗机干燥炉(2#) (DA007-2)出口	
	油烟	食堂油烟	食堂油烟出口(DA012)	监测 2 天,每天 5 次
	非甲烷总烃	/	电泳1车间外1米处	
 无组织排放	非甲烷总烃	/	电泳2车间外1米处	 监测 2 天, 每天
九组织排从 废气	总悬浮颗粒物	/	铸造车间外1米处	五例 2 人, 母人 4 次
<i>版</i> (总悬浮颗粒物、非甲烷总 烃、臭气浓度	/	项目厂界四周各设1个监 测点	4 (),

7.1.3 厂界噪声监测

在厂界四周布设4个监测点位,东侧、南侧、西侧、北侧和敏感点各设1个监测点位,在厂界围墙外1米处,传声器位置高于墙体并指向声源处,监测2天,昼、夜间监测1次/天。噪声监测内容见表7-3,噪声监测点位图详见图3-3。

表 7-3 监测内容及监测频次

监测对象	监测点位	监测频次
厂界噪声	企业厂界四周各设1个监测点位	监测2天,昼、夜间监测1次/天
敏感点	明珠公寓设1个监测点位	监测2天,昼、夜间监测1次/天

7.1.4 固 (液) 体废物监测

本次项目未对固(液)体废物监测,只对固体废物在试生产期间的产生、贮存、处置等情况进行调查。

7.1.5 辐射监测

本次项目无辐射设备,未进行辐射监测。

7.2 环境质量监测

本项目验收工作无环境质量监测要求。运营期常规监测建议参考排污许可证 要求,开展自行监测方案。

8. 质量保证及质量控制

8.1 监测分析方法

表 8-1 监测分析方法一览表

类别	项目名称	方法依据	检出限
		万法似佑	
	pH 值	水质 pH 值的测定 电极法 HJ 1147-2020	0. 00−13. 00 (无量纲)
	化学需氧量	水质 化学需氧量的测定 重铬酸盐法 HJ 828-2017	4mg/L
	氨氮	水质 氨氮的测定 纳氏试剂分光光度法 HJ 535-2009	0.025mg/L
	总氮	水质 总氮的测定 碱性过硫酸钾消解紫外分光光度法 HJ 636-2012	0.05mg/L
	石油类	石油类和动植物油类的测定 红外分光光度法 HJ 637-2012	0.04mg/L
废水	阴离子表面 活性剂	水质 阴离子表面活性剂的测定 亚甲蓝分光光度法 GB/T 7494-1987	0.05mg/L
	石油类	水质 石油类和动植物油类的测定 红外分光光度法 HJ 637-2018	/
	总锰	水质 铁、锰的测定 火焰原子吸收分光光度法 GB/T 11911-1989	0.01mg/L
	五日生化需 氧量	水质 五日生化需氧量(BOD5)的测定 稀释与接种法 HJ 505-2009	/
	悬浮物	水质 悬浮物的测定 重量法 GB/T 11901-1989	/
	总磷	水质 总磷的测定 钼酸铵分光光度法 GB/T 11893-1989	0.05mg/L
	非甲烷总烃	固定污染源废气 总烃、甲烷和非甲烷总烃的测定 气相 色谱法 HJ 38-2017	0.07mg/m^3
有组织废	二氧化硫	固定污染源废气 二氧化硫的测定 定电位电解法 HJ 57-2017	3mg/m^3
Ę	氮氧化物	固定污染源废气 氮氧化物的测定 定电位电解法 HJ 693-2014	6mg/m^3
	低浓度颗粒 物	固定污染源废气 低浓度颗粒物的测定 重量法 HJ 836-2017	$1.0 \mathrm{mg/m}^3$
无组织废 气	非甲烷总烃	环境空气 总烃、甲烷和非甲烷总烃的测定直接进样-气相色谱法 HJ 604-2017	0.07mg/m^3
	总悬浮颗粒 物	环境空气 总悬浮颗粒物的测定 重量法 HJ 1263-2022	/
	臭气浓度	空气质量 恶臭的测定 三点比较式臭袋法 GB/T 14675-1993	10(无量纲)
噪声	厂界噪声	环境空气和废气 臭气的测定 三点比较式臭袋法 HJ 1262-2022	30-130dB

8.2 监测仪器

表 8-2 监测仪器一览表

仪器名称	规格型号	监测因子	检定或校准情况
pH it	F2	pH 值	检定合格
pH it	PHS-3C	氟化物	检定合格
紫外可见分光光度计	Т6	氨氮、总氮、阴离子表面活性剂、二 氧化硫、氮氧化物、总磷	检定合格
红外分光测油仪	0IL460	石油类	检定合格
生化培养箱	250B 型	五日生化需氧量	检定合格
滴定管	/	化学需氧量	检定合格
原子分光光度计	TAS-990AFG	总锌、总锰	检定合格
红外分光测油仪	0IL460	石油类	检定合格
电子分析天平	GL224-1SCN	悬浮物	检定合格
气相色谱仪	GC112A	非甲烷总烃	检定合格
电子天平	BT25S	低浓度颗粒物、总悬浮颗粒物	检定合格
烟尘烟气采样器	GH-60E	二氧化硫、氮氧化物	检定合格
噪声频谱分析仪	HS5660D	噪声	检定合格

8.3 人员资质

建设项目验收参与人员见表 8-3。

表 8-3 建设项目验收参与人员一览表

人员	姓名	职位/职称
项目负责人	徐钦良	副总/工程师
报告审核人	钱雅君	环境副主任/中级工程师
报告审定人	吴斌	实验室主任/中级工程师
	张磊	环境监测员/中级工程师
	张晨	环境监测员/初级工程师
	杨兴	环境监测员/初级工程师
	戈涛	环境监测员/初级工程师
	钱雅君	环境监测员/中级工程师
	陆力铭	环境监测员
 其他人员	李静伟	环境监测员
A. A	王伊杰	环境监测员
	胡平	环境监测员
	杨晓婷	实验室检测员/中级工程师
	毛雨清	实验室检测员
	周芸	实验室检测员/初级工程师
	沈伟峰	实验室检测员/中级工程师
	陈羽丰	实验室检测员

8.4 水质监测分析过程中的质量保证和质量控制

水样的采集、运输、保存、实验室分析和数据计算的全过程均按照相关标准和技术规范的要求进行。

在现场监测期间,对废水总排口的水样采取 25%平行样的方式进行质量控制。 质量控制结果表明,本次水样的现场采集及实验室分析均满足质量控制要求。平 行样品测试结果见表 8-4。

平行样 采样日期 分析项目 污水总 平-污水总排口 相对偏差(%) 允许相对偏差(%) 排口 0 个单位 2024. 11. 25 pH 值 (无量纲) 7.0 7.0 ≤±0.1 个单位 五日生化需氧量(mg/L) 159 -1.24≤±15 2024. 11. 25 163 2024. 11. 25 化学需氧量(mg/L) 307 304 0.49 $\leq \pm 10$ 2024. 11. 25 氨氮(mg/L) 8.36 8.42 -0.36 $\leq \pm 10$ -0.28 $\leq \pm 10$ 2024. 11. 25 总磷(mg/L) 0.5410.544 2024. 11. 25 阴离子表面活性剂 0.109 0.120 -4.80 $\leq \pm 20$ 2024, 11, 25 总氮 25.8 25.5 0.58 2024. 11. 26 pH值(无量纲) 0个单位 ≤±0.1 个单位 7.2 7.2 2024. 11. 26 五日生化需氧量(mg/L) 148 140 2.78 $\leq \pm 15$ 2024. 11. 26 化学需氧量(mg/L) 281 286 -0.88 $\leq \pm 10$ 0.19 2024. 11. 26 氨氮(mg/L) 8.08 8.05 $\leq \pm 10$ 2024. 11. 26 总磷(mg/L) 0.536 0.533 0.28 $\leq \pm 10$ 2024. 11. 26 阴离子表面活性剂 0.113 0.111 0.89 $\leq \pm 20$ 28. 2 2024. 11. 26 总氮 28.3 0.18 $\leq \pm 5$

表 8-4 污水总排口平行样品测试结果表

注:表中监测数据引自嘉兴嘉卫检测科技有限公司监测报告 HJ240317 号。

8.5 气体监测分析过程中的质量保证和质量控制

8.5.1 仪器的检定和校准

- 1 属于国家强制检定目录内的工作计量器具,必须按期送计量部门检定,检定合格,取得检定证书后方可用于监测工作。
- 2 排气温度测量仪表、斜管微压计、空盒大气压力计、真空压力表(压力计)、转子流量计、干式累积流量计、采样管加热温度、分析天平、采样嘴、皮托管系数等至少半年自行校正一次。校正方法按 GB/T16157-1996 中第 12 章执行。
- 3 自动烟尘采样仪和含湿量测定装置的温度计、电子压差计、流量计应定期进行校准。

8.5.2 监测仪器设备的质量检验

- 1 监测仪器设备的质量应达到相关标准的规定,烟气采样器的技术要求见 HJ/T47 烟尘采样器的技术要求见 HJ/T48。
- 2 对微压计、皮托管和烟气采样系统进行气密性检验,按 GB/T16157-1996 中5.2.2.3 进行检漏试验。当系统漏气时,应再分段检查、堵漏或重新安装采样系统,直到检验合格。
- 3 空白滤筒称量前应检查外表有无裂纹、孔隙或破损,有则应更换滤筒,如果滤筒有挂毛或碎屑,应清理干净。当用刚玉滤筒采样时,滤筒在空白称重前,要用细砂纸将滤筒口磨平整,以保证滤筒安装后的气密性。

- 4 应严格检查皮托管 和采样嘴,发现变形或损坏者不能使用。
- 5 气态污染物采样,要根据被测成分的存在状态和特性,选择合适的采样管、连接管和滤料。采样管材质应不吸收且不与待测污染物起化学反应,不被排气成分腐蚀,能在排气温度和气流下保持足够的机械强度。滤料应选择不吸收且不与待测污染物起化学反应的材料,并能耐受高温拌气。连接管应选择不吸收且不与待测污染物起化学反应,并便于连接与密封的材料。
- 6 吸收瓶应严密不漏气,多孔筛板吸收瓶鼓泡要均匀,在流量为 0.5L/min 时, 其阻力应在 5±0.7kPa。

8.5.3 现场监测的质量保证

1 排气参数的测定

监测期间应有专人负责监督工况,污染源生产设备、治理设施应处于正常的运行工况;

在进行排气参数测定和采样时,打开采样孔后应仔细清除采样孔短接管内的积灰,再插入测量仪器或采样探头,并严密堵住采样孔周围缝隙以防止漏气:

排气温度测定时,应将温度计的测定端插入管道中心位置,待温度指示值稳定后读数,不允许将温度计抽出管道外读数;

排气水分含量测定时,采样管前端应装有颗粒物过滤器,采样管应有加热保温措施,应对系统的气密性进行检查,对于直径较大的烟道,应将采样管尽量深地插入烟道,减少采样管外露部分,以防水汽在采样管中冷凝,造成测定结果偏低;

排气压力测定时,事先须将仪器调整水平,检查微压计液柱内有无气泡,液面调至零点:对皮托管、微压计和系统进行气密性检查:

使用微压计或电子压差 计测定排气压力时,应首先进行零点校准。测定排 气压力时皮托管的全压孔要正对气流方向,偏差不得超过 10 度。

2 颗粒物的采样

- (1)颗粒物的采样必须按照等速采样的原则进行,尽可能使用微电脑自动跟 踪采样仪,以保证等速采样的精度,减少采样误差;
- (2) 采样位置应尽可能选择气流平稳的管段, 采样断面最大流速与最小流速 之比不宜大于 3 倍, 以防仪器的响应跟不上流速的变化, 影响等速采样的精度;

(3)滤筒在安放和取出采样管时,须使用镊子,不得直接用手接触,避免损坏和沾污,若不慎有脱落的滤筒碎屑,须收齐放入滤筒中,滤筒安放要压紧固定,防止漏气,采样结束,从管道抽出采样管时不得倒置,取出滤筒后,轻轻敲打前弯管并用毛刷将附在管内的尘粒刷入滤筒中,将滤筒上口内折封好,放入专用容器中保存,注意在运送过程中切不可倒置,测定低浓度颗粒物宜采用 IS012141 方法。

3 气态污染物的采样

- (1) 废气采样时,应对废气被测成分的存在状态及特性、可能造成误差的各种因素(吸附、冷凝、挥发等),进行综合考虑,来确定适宜的采样方法(包括采样管和滤料材质的选择、采样体积、采样管和导管加热保温措施等);
- (2) 采集废气样品时,采样管进气口应靠近管道中心位置,连接采样管与吸收瓶的导管应尽可能短,必要时要用保温材料保温;
- (3) 采样前,在采样系统连接好以后,应对采样系统进行气密性检查,如发现漏气应分段检查,找出问题,及时解决:
- (4)使用吸收瓶或吸附管系统采样时,吸收装置应尽可能靠近采样管出口, 采样前使排气通过旁路5min,将吸收瓶前管路内的空气彻底置换:采样期间保持流 量恒定,波动不大于10%,采样结束,应先切断采样管至吸收瓶之间的气路,以 防管道负压造成吸收液倒吸;
- (5) 采样结束后,立即封闭样品吸收瓶或吸附管两端,尽快送实验室进行分析。在样品运送和保存期间,应注意避光和控温;

8.5.4 实验室分析质量保证

属于国家强制检定目录内的实验室分析仪器及设备按期送计量部门检定,检定合格,取得检定证书后方可用于样品分析工作;分析用的各种试剂和纯水的质量符合分析方法的要求;使用经国家计量部门授权生产的有证标准物质进行量值传递。标准物质按要求妥善保存,不得使用超过有效期的标准物质;送实验室的样品及时分析,否则必须按各项目的要求保存,并在规定的期限内分析完毕。每批样品至少应做一个全程空白样,实验室内进行质控样、平行样或加标回收样品的测定;滤筒(膜)的称量应在恒温恒湿的天平室中进行,应保持采样前和采样后称量条件一致。

8.6 噪声监测分析过程中的质量保证和质量控制

噪声仪在使用前后用声校准器校准,校准读数偏差不大于 0.5 分贝。本次验收测试校准记录见表 8-5。

表 8-5 噪声测试校准记录表

监	测日期	测前 (dB)	测后 (dB)	差值 (dB)	是否符合要求
202	4. 11. 25	93. 6	93. 5	-0. 1	符合
202	4. 11. 26	93. 6	93. 8	0.2	符合

8.7 固(液)体废物监测分析过程中的质量保证和质量控制

本项目未对固 (液)体废物监测。

8.8 土壤监测分析过程中的质量保证和质量控制

本项目未对土壤监测。

9. 验收监测结果

9.1 生产工况

加西贝拉压缩机有限公司产品主要为压缩机。在验收监测期间主要产品的生产负荷基本达到国家对建设项目环境保护设施竣工验收监测工况大于75%的要求。 产量核实见表 9-1。

表 9-1 建设项目竣工验收监测期间产量核实表

	监测期间主要产品产量		 规模设计日产量
监测日期	产量	负荷(%)	7
2024. 11. 25	压缩机: 3.3万台	89. 9	
2024. 11. 26	压缩机: 3.2万台	87. 2	
2024. 11. 27	压缩机: 3.2万台	87. 2	压缩机: 3.67 万台
2024. 11. 28	压缩机: 3.1万台	84. 5	
2024. 12. 2	压缩机: 3.3 万台	89. 9	

注:规模日设计产量等于验收年产量除以全年工作天数。

9.2 环保设施调试运行效果

9.2.1 环保设施处理效率监测结果

9.2.1.1 废水治理设施

验收监测期间,本公司的污水处理设施运行正常。在采样人员合理布置监测 点位,分析人员通过标准方法分析样品并得出监测数据的前提下,根据污水处理 设施进出口各污染因子浓度的日均值,得出环保设施的处理效率。处理效率见表 9-2。

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测报告

表 9-2 废水处理设施效率统计表

监测日期	监测点位	化学需氧量 (mg/L)	五日生化需氧量 (mg/L)	总磷 (mg/L)
	调节池(高浓度废水)(日均值)	2648	1228	33. 7
2024. 11. 25	出水池 (高浓度废水)	624	305	10. 1
	废水处理设施效率(%)	76. 4	75. 1	70.0
	调节池(高浓度废水)(日均值)	2420	1004	37. 3
2024. 11. 26	出水池 (高浓度废水)	567	292	10.8
	废水处理设施效率(%)	76. 6	70. 9	71. 0
	二日平均去除效率(%)	76. 5	73. 0	70. 5

由表 9-2 数据得出,处理设施二日平均去除效率:化学需氧量 76.5%,五日生化需氧量 73.0%,总磷 70.5%。

9.2.1.2 废气治理设施

验收监测期间,该项目的环保设施均运行正常。根据废气处理设施进出口各污染因子排放速率的日均值,得出环保设施的处理效率。砂处理废气处理设施和清洗(抛丸)废气由于两条管道连接废气处理设施太短,不满足监测条件,故进口未监测。曲轴箱清洗机干燥炉(DA007)、电泳干燥炉(DA010)无废气处理设施、锅炉废气排放口(DA021)、食堂油烟废气(DA012)只对出口进行检测,无法计算去除效率。处理效率见表 9-3。

表 9-3 废气处理设施效率统计表

	表 9-3 废气处埋设施统	(平)(1) (2)	
监测日期	监测点位	颗粒物(kg/h)	非甲烷总烃(kg/h)
2024. 11. 27	熔化废气处理设施进口(日均值)	0. 0599	/
2024. 11. 27	熔化废气(DA001)处理设施出口(日均值)	0.022	/
	废气处理设施效率(%)	63. 3	/
	熔化废气处理设施进口(日均值)	0. 0599	/
2024. 11. 28	熔化废气(DA001)处理设施出口(日均值)	0. 0228	/
	废气处理设施效率(%)	61. 9	/
	二日平均去除效率(%)	62. 6	
0004 11 05	混砂废气进口(日均值)	1.52	/
2024. 11. 25	混砂废气出口(DA005)(日均值)	0. 0446	/
	废气处理设施效率(%)	97. 1	/
	混砂废气进口(日均值)	1.52	/
2024. 11. 26	混砂废气出口(DA005)(日均值)	0. 0514	/
	废气处理设施效率(%)	98. 1	/
	二日平均去除效率(%)	97. 6	·
	砂处理废气进口(日均值)	0.0599	/
2024. 11. 25	砂处理废气出口(DA004)(日均值)	0.022	/
	废气处理设施效率(%)	63. 3	/
	砂处理废气进口(日均值)	0.0599	/
2024. 11. 26	砂处理废气出口(DA004)(日均值)	0. 0228	/
	废气处理设施效率(%)	61. 9	/
	二日平均去除效率(%)	62. 6	,
	壳封焊 1-2#废气进口(日均值)	0.174	/
2024. 11. 27	壳封焊 1-2#废气出口(DA008-1)(日均值)	0.025	/
	废气处理设施效率(%)	85. 6	/
	壳封焊 1-2#废气进口(日均值)	0. 201	/
2024. 11. 28	壳封焊 1-2#废气出口(DA008-1)(日均值)	0.022	/
	废气处理设施效率(%)	89. 0	/
	二日平均去除效率(%)	87. 8	/
	1#电泳+烘干废气进口(日均值)	/	0, 0783
2024. 11. 27	1#电泳+烘干废气出口(DA002)(日均值)	/	0.00882
	废气处理设施效率(%)	/	88. 7
	1#电泳+烘干废气进口(日均值)	/	0. 0757
2024. 11. 28	1#电泳+烘干废气出口(DA002)(日均值)	/	0.00983
	废气处理设施效率(%)	/	87. 0
	二日平均去除效率(%)	,	87. 9
0004 4:	2#电泳+烘干废气进口(日均值)	/	0. 215
2024. 11. 27	2#电泳+烘干废气出口(DA009)(日均值)	/	0. 0261
	废气处理设施效率(%)	/	87. 9
	2#电泳+烘干废气进口(日均值)	//	0. 185
2024. 11. 28			

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测 报告

废气处理设施效率(%)	/	83. 6
二日平均去除效率(%)	/	85. 8

9.2.1.3 噪声治理设施

根据监测报告 HJ240317 号数据,企业噪声治理设施的降噪效果良好,厂界噪声均达到环评批复要求。

9.2.2 污染物排放监测结果

9.2.2.1 废水

企业废水入管网口污染物 pH、化学需氧量、石油类、阴离子表面活性剂、五日生化需氧量、石油类、总锰和悬浮物浓度日均值(范围)均低于《污水综合排放标准》(GB 8978-1996)表 4 三级标准,氨氮、总磷浓度日均值均低于《工业企业废水氮、磷污染物间接排放标准》(DB 33/887-2013)表 1 排放限值,总氮浓度日均值均低于《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 标准。废水监测结果见表 9-4。

表 9-4 废水处理设施监测结果

采样	检测点	样品	检测	单位			检测结果						
日期	位置	性状	项目	半型	第1次	第2次	第3次	第4次	平行				
			化学需氧量	mg/L	2.67×10^{3}	2.53×10^{3}	2.64×10^{3}	2.75×10^{3}	2.84×10^{3}				
			悬浮物	mg/L	43	46	40	49	/				
			五日生化需氧量	mg/L	1.19×10^{3}	1.26×10^{3}	1.27×10^{3}	1.19×10^{3}	1.17×10^{3}				
			阴离子表面活性剂	mg/L	1.04	1.05	0. 965	0.950	0.952				
2024 11 2	调节池	左 岳独	石油类	mg/L	18. 2	17. 8	17. 9	17.8	/				
2024. 11. 2	(高浓	灰色微 挥	总磷	mg/L	33. 7	35. 3	33. 4	32. 5	32. 6				
υ	度废水)	7年	锰	mg/L	0.33	0.34	0. 37	0.35	0.34				
		pH 值	无量纲	7. 3	7.3	7.4	7. 4	7. 5					
			氨氮	mg/L	31.8	30. 8	30. 5	32. 5	32. 7				
			总氮	mg/L	141	137	125	132	131				
			色度	倍	2	3	2	4	/				
			化学需氧量	mg/L	2.33×10^{3}	2.43×10^{3}	2.55×10^{3}	2.37×10^{3}	2.32×10^{3}				
								悬浮物	mg/L	52	60	48	55
			五日生化需氧量	mg/L	1.01×10^{3}	963	1.05×10^{3}	994	971				
			阴离子表面活性剂	mg/L	1.20	1.18	1. 19	1. 19	1. 17				
2024 11 2	调节池	灰色微	石油类	mg/L	13. 4	13. 0	12.6	13. 7	/				
2024. 11. 2	(高浓	グロ版 海	总磷	mg/L	36. 0	37. 7	37. 2	38. 4	38. 2				
U	度废水)	17	锰	mg/L	0.31	0. 29	0.30	0. 28	0. 27				
			pH 值	无量纲	7. 4	7.4	7.5	7. 5	7. 5				
			氨氮	mg/L	32. 0	30. 7	31.5	32. 2	32. 1				
			总氮	mg/L	145	149	143	136	138				
				倍	5	7	5	9	/				

续表 9-4 废水处理设施监测结果

采样	检测点	样品	检测	单位			检测结果		
日期	位置	性状	项目	1	第1次	第2次	第3次	第4次	平行
			化学需氧量	mg/L	635	592	611	658	643
			悬浮物	mg/L	72	78	64	83	/
			五日生化需氧量	mg/L	294	288	326	313	309
			阴离子表面活性剂	mg/L	0. 904	0. 911	0. 918	0.872	0.888
	出水池(高浓		石油类	mg/L	16. 2	17. 1	17. 5	16. 7	/
2024. 11. 25	度废水)	灰色浑浊	总磷	mg/L	10.6	10. 3	9. 67	9.95	9.99
			锰	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
			pH 值	无量纲	8. 5	8. 5	8.4	8. 5	8. 5
			氨氮	mg/L	28. 4	26. 4	26. 2	29. 1	29. 4
			总氮	mg/L	118	114	121	110	107
			色度	倍	5	40	40	30	/
			化学需氧量	mg/L	557	565	553	592	568
			悬浮物	mg/L	60	63	58	69	/
			五日生化需氧量	mg/L	287	276	308	297	313
			阴离子表面活性剂	mg/L	1.05	1.05	1. 01	1.03	1.04
	出水池(高浓		石油类	mg/L	13. 4	13. 2	13. 5	12.8	/
2024. 11. 26	度废水)	灰色浑浊	总磷	mg/L	10. 9	11. 2	10.8	10. 4	10. 3
	(文)及(八)	7,3,712	锰	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
			pH 值	无量纲	8. 4	8.6	8.6	8. 5	8. 5
			>	mg/L	24. 2	25. 7	27. 7	24. 7	24. 5
			总氮	mg/L	123	137	124	129	131
			色度	倍	30	30	40	50	/
备注: <表示小	于检出限。								

续表 9-4 废水处理设施监测结果

采样	检测点	样品	检测	A C E C ME ME			检测结果		
日期	位置	性状	项目	单位	第1次	第2次	第3次	第4次	平行
			化学需氧量	mg/L	365	381	368	371	366
			悬浮物	mg/L	35	33	40	38	/
			五日生化需氧量	mg/L	190	173	169	180	179
			阴离子表面活性剂	mg/L	0. 261	0. 222	0. 238	0.211	0. 227
	pH 调节池(综		石油类	mg/L	2. 07	2.01	1. 96	1.92	/
2024. 11. 25	合废水)	淡黄微浑	总磷	mg/L	0. 638	0.715	0. 677	0.661	0.663
	日及水)		锰	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
			pH 值	无量纲	6.8	6.8	6.8	6. 9	6.9
			氨氮	mg/L	10. 9	10. 5	10. 2	10. 1	10. 1
			总氮	mg/L	30.6	32.8	31.8	31. 3	31.0
			色度	倍	20	20	30	20	/
			化学需氧量	mg/L	347	337	333	344	338
			悬浮物	mg/L	45	39	42	46	/
			五日生化需氧量	mg/L	168	165	184	180	177
			阴离子表面活性剂	mg/L	0. 343	0.338	0.352	0.345	0. 347
	pH 调节池(综		石油类	mg/L	1.95	1.96	1. 90	1.92	/
2024. 11. 26	合废水)	淡黄微浑	总磷	mg/L	0.648	0.749	0. 703	0.739	0. 736
	口及小人		锰	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
			pH 值	无量纲	6.7	6. 9	6. 7	6. 7	6. 7
			氨氮	mg/L	9. 45	9.71	10. 2	9. 73	9. 68
			总氮	mg/L	35. 3	33. 1	34.8	34. 1	34. 4
			色度	倍	40	40	50	50	/
备注: <表示小	,于检出限。								

续表 9-4 废水处理设施监测结果

采样	检测点	样品	检测		X-100 - 100/	八人工人工人	检测结果			日均值	11. (-1-10)	VI Indiana
日期	位置	性状	项目	单位	第1次	第2次	第3次	第4次	平行	(范围)	执行标准	达标情况
			化学需氧量	mg/L	291	301	296	307	304	299	500	达标
			悬浮物	mg/L	26	33	27	25	/	28	400	达标
			五日生化需氧量	mg/L	149	157	166	159	163	158	300	达标
			阴离子表面活性剂	mg/L	0.109	0.113	0. 102	0. 109	0. 12	0.108	20	达标
2024.	污水总	冰基标	石油类	mg/L	1.45	1. 48	1. 51	1. 54	/	1.50	20	达标
11. 25	排口(综	淡黄较 清	总磷	mg/L	0.553	0. 527	0.568	0. 541	0. 544	0. 547	8	达标
11. 20	合废水)	1月	锰	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	5	达标
			pH 值	无量纲	7	7. 1	7	7	7	7-7.1	6-9	达标
			氨氮	mg/L	8.82	8. 25	8. 11	8. 36	8. 42	8.39	35	达标
			总氮	mg/L	24. 3	26. 3	27. 1	25.8	25. 5	25. 9	70	达标
			色度	倍	8	9	9	8	/	8.5	/	/
			化学需氧量	mg/L	286	294	275	281	286	284	500	达标
			悬浮物	mg/L	22	24	20	23	/	22	400	达标
			五日生化需氧量	mg/L	155	141	132	148	140	144	300	达标
			阴离子表面活性剂	mg/L	0.125	0.115	0.122	0. 113	0. 111	0.119	20	达标
2024.	污水总	淡黄较	石油类	mg/L	1.29	1. 21	1.21	1. 53	/	1.31	20	达标
11. 26	排口(综		总磷	mg/L	0. 593	0. 582	0.558	0. 536	0. 533	0. 567	8	达标
11. 20	合废水)	113	锰	mg/L	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	5	达标
			pH 值	无量纲	7. 1	7. 1	7. 1	7.2	7.2	7.1-7.2	6-9	达标
			氨氮	mg/L	7.99	8. 22	8. 33	8. 08	8.05	8. 16	35	达标
			总氮	mg/L	23. 3	26. 3	27	28. 3	28. 2	26. 2	70	达标
			色度	倍	20	20	20	30	/	22. 5	/	/
备注: <	〈 表示小于村	金出限。										

注:表中监测数据引自监测报告 HJ240317 "<"表示小于检出限。

9.2.2.2 废气

(1) 有组织排放

全厂 DA001 (熔化废气)、DA003 (落砂)、DA004 (砂处理废气)、DA005 (混 砂废气)、DA006(清理(抛丸)废气)污染物低浓度颗粒物浓度均低于《铸造工 业大气污染物排放标准》(GB39726-2020)中表 1 大气污染物排放限值。DA002 (1#电泳 +烘干废气)、DA009(2#电泳+烘干废气)污染物非甲烷总烃、臭气浓 度浓度均低于《工业涂装工序大气污染物排放标准》(DB33/2146-2018)表2大 气污染物特别排放限值。DA008(壳封焊废气)污染物低浓度颗粒物浓度及排放速 率均低于《大气污染物综合排放标准》(GB16297-1996)表 2 中的二级标准。DA007 (曲轴箱清洗机干燥炉废气)、DA010(电泳干燥炉废气)污染物SO。、NOx、颗粒 物浓度均低于《关于印发<浙江省工业炉窑大气污染综合治理实施方案>的通知》 (浙环函[2019]315 号)中的限值要求(颗粒物、二氧化硫、氮氧化物排放限值 分别不高于 30、200、300 毫克/立方米)。DA011(锅炉废气)污染物 SO₂、颗粒 物浓度均低于《锅炉大气污染物排放标准》(GB13271-2014)表 3 大气污染物特 别排放限值,NOx 浓度均低于执行"《关于印发<2020年嘉兴市区大气污染质量攻 坚方案〉的通知》(嘉生态示范市创[2020]34号)要求"。DA012(食堂油烟)污 染物油烟均低于《饮食业油烟排放标准(试行)》(GB18483-2001)中的标准要求。 有组织废气监测点位见图 3-3,废气监测数据见表 9-5 和表 9-10,单位产品非甲 烷总烃排放量见表 9-11。

0

							结果			
采样日期	检测点位置	检测项	目	単位	第1次	第2次	第3次	平均值	执行标准	达标情况
			排放浓度	mg/m ³	5.5	5.0	4.6	5.03	/	/
2024.11.27	熔化废气进口	颗粒物	折算浓度	mg/m ³	31.0	26.8	22.0	26.6	/	/
			排放速率	kg/h	6.07×10 ⁻²	6.09×10 ⁻²	5.81×10 ⁻²	5.99×10 ⁻²	/	/
			排放浓度	mg/m ³	5.1	5.3	4.7	5.0	/	/
2024.11.28	熔化废气进口	颗粒物	折算浓度	mg/m ³	28.9	31.4	25.3	28.5	/	/
			排放速率	kg/h	5.99×10 ⁻²	6.47×10 ⁻²	5.51×10 ⁻²	5.99×10 ⁻²	/	/
			排放浓度	mg/m ³	1.6	1.2	1.5	1.4	/	/
2024.11.27	熔化废气出口(DA001)	低浓度颗粒物	折算浓度	mg/m ³	11.0	8.1	11.1	10.1	30	达标
			排放速率	kg/h	2.40×10 ⁻²	1.94×10 ⁻²	2.25×10 ⁻²	2.20×10 ⁻²	/	/
			排放浓度	mg/m ³	1.3	1.7	1.4	1.5	/	/
2024.11.28	熔化废气出口(DA001)	低浓度颗粒物	折算浓度	mg/m ³	7.4	9.0	10.8	9.1	30	达标
			排放速率	kg/h	2.04×10 ⁻²	2.64×10 ⁻²	2.17×10 ⁻²	2.28×10 ⁻²	/	/
2024.11.27	 落砂废气进口	 颗粒物	排放浓度	mg/m ³	93.2	97.9	85.6	92.2	/	/
2024.11.27	格形成(近日 	大块不立 1/J	排放速率	kg/h	1.55	1.58	1.55	1.56	/	/
2024.11.28	落砂废气进口	颗粒物	排放浓度	mg/m ³	94.9	95.9	91.7	94.2	/	/
2024.11.26	格砂皮(近口 		排放速率	kg/h	1.54	1.41	1.34	1.43	/	/
2024.11.27	落砂废气出口(DA003)	低浓度颗粒物	排放浓度	mg/m ³	4.4	4.5	4.8	4.57	30	达标
2024.11.27			排放速率	kg/h	7.22×10 ⁻²	6.41×10 ⁻²	7.15×10 ⁻²	6.93×10 ⁻²	/	/
2024.11.28	落砂废气出口(DA003)	低浓度颗粒物	排放浓度	mg/m ³	4.6	4.7	4.9	4.73	30	达标
2024.11.28		似似这秋粒初	排放速率	kg/h	6.73×10 ⁻²	6.88×10 ⁻²	7.33×10 ⁻²	6.98×10 ⁻²	/	/

四投口扣	松剛上仔 盟	∤人 湖山五		光化		检测	结果		北公共	计扫解加
采样日期	检测点位置		l H	单位	第1次	第2次	第 3 次	平均值	执行标准	达标情况
2024.11.25	砂处理废气出口(DA004)	低浓度颗粒物	排放浓度	mg/m ³	2.8	3.5	2.4	2.9	30	达标
2024.11.23		似似)支积粒初	排放速率	kg/h	3.74×10 ⁻²	4.09×10 ⁻²	3.04×10 ⁻²	3.61×10 ⁻²	/	/
2024.11.26	砂处理废气出口(DA004)	 低浓度颗粒物	排放浓度	mg/m ³	3.0	3.8	3.3	3.4	30	达标
2024.11.20		队化/文/火作工/分	排放速率	kg/h	3.67×10 ⁻²	4.65×10 ⁻²	4.40×10 ⁻²	4.24×10 ⁻²	/	/
2024.11.25	混砂废气进口	 颗粒物	排放浓度	mg/m ³	100.8	105.8	115.1	107.3	/	/
2024.11.23	部形成 (近日	↑火イエ 1/J	排放速率	kg/h	1.49	1.56	1.50	1.52	/	/
2024.11.26	混砂废气进口	 颗粒物	排放浓度	mg/m ³	102.5	99.1	104.7	102.1	/	/
2024.11.20	化砂灰 (近日	本央イエ 1/J	排放速率	kg/h	1.50	1.51	1.54	1.52	30	达标
2024.11.25	混砂废气出口(DA005)	 低浓度颗粒物	排放浓度	mg/m ³	2.8	3.2	2.4	2.8	/	/
2024.11.23		队孙/人又称从121分	排放速率	kg/h	4.32×10 ⁻²	5.20×10 ⁻²	3.85×10 ⁻²	4.46×10 ⁻²	/	/
2024.11.26	混砂废气出口(DA005)	 低浓度颗粒物	排放浓度	mg/m ³	3.2	3.7	3.4	3.4	30	达标
2024.11.20	能的及(田口(DA003)	队孙/区/汉/ 1/0	排放速率	kg/h	5.39×10 ⁻²	5.16×10 ⁻²	4.88×10 ⁻²	5.14×10 ⁻²	/	/
2024.11.25	清理	 低浓度颗粒物	排放浓度	mg/m ³	3.8	4.5	3.5	3.9	30	达标
2024.11.23	(抛丸)废气出口(DA006)	以化反积性物	排放速率	kg/h	7.98×10 ⁻²	9.46×10 ⁻²	7.32×10 ⁻²	8.25×10 ⁻²	/	/
2024.11.26	清理	 低浓度颗粒物	排放浓度	mg/m ³	4.3	4.6	4.0	4.3	30	达标
2024.11.20	(抛丸)废气出口(DA006)	以化反积性物	排放速率	kg/h	7.56×10 ⁻²	7.40×10 ⁻²	6.45×10 ⁻²	7.14×10 ⁻²	/	/
2024.11.27	壳封焊 1-2#废气进口	颗粒物	排放浓度	mg/m ³	21.0	22.8	21.5	21.8	/	/
2024.11.27	几到什1-2#)及(近日	↑ 小火イエ 1/J	排放速率	kg/h	0.171	0.182	0.169	0.174	/	/
2024.11.28	壳封焊 1-2#废气进口	颗粒物	排放浓度	mg/m ³	20.6	29.4	22.5	24.2	/	/
2024.11.20	元封/年1-2#/及【近日	木灰木丛 17月 	排放速率	kg/h	0.173	0.239	0.190	0.201	/	/

□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □	松测上位里	#公·I	加養日	A A		检测	结果		执行标	达标情
采样日期	检测点位置	个 型 火	项目	单位	第1次	第2次	第3次	平均值	准	况
2024 11 27	壳封焊 1-2#废气出口	低浓度颗粒物	排放浓度	mg/m ³	2.7	2.9	3.2	2.9	120	达标
2024.11.27	DA008-1) 完封焊 1-2#废气出口 (DA008-1) 由泳干燥炉 (1#) 废气	队似没规粒物	排放速率	kg/h	2.34×10 ⁻²	2.36×10 ⁻²	2.79×10 ⁻²	2.50×10 ⁻²	3.5	达标
2024 11 28	壳封焊 1-2#废气出口	低浓度颗粒物	排放浓度	mg/m ³	3.0	2.5	3.1	2.9	120	达标
2024.11.28	(DA008-1)		排放速率	kg/h	2.33×10 ⁻²	1.91×10 ⁻²	2.36×10 ⁻²	2.20×10 ⁻²	3.5	达标
			排放浓度	mg/m ³	1.1	1.7	1.2	1.3	/	/
		低浓度颗粒物	折算浓度	mg/m ³	1.8	2.9	2.1	2.3	30	达标
			排放速率	kg/h	8.63×10 ⁻³	1.51×10 ⁻²	9.51×10 ⁻³	1.11×10 ⁻²	/	/
			排放浓度	mg/m ³	0.244	0.215	0.197	0.219	/	/
2024.11.27		氮氧化物	折算浓度	mg/m ³	0.415	0.366	0.335	0.372	300	达标
	計版口(DAUIU-I)		排放速率	kg/h	1.92×10 ⁻³	1.91×10 ⁻³	1.56×10 ⁻³	1.80×10 ⁻³	/	/
		二氧化硫	排放浓度	mg/m ³	1.12×10 ⁻²	1.03×10 ⁻²	9.46×10 ⁻³	1.03×10 ⁻²	/	/
			折算浓度	mg/m ³	1.91×10 ⁻²	1.75×10 ⁻²	1.61×10 ⁻²	1.76×10 ⁻²	200	达标
			排放速率	kg/h	8.80×10 ⁻⁵	9.19×10 ⁻⁵	7.50×10 ⁻⁵	8.50×10 ⁻⁵	/	/
			排放浓度	mg/m ³	1.6	1.4	1.2	1.4	/	/
		低浓度颗粒物	折算浓度	mg/m ³	2.7	2.4	2.0	2.4	/	/
			排放速率	kg/h	1.28×10 ⁻²	1.05×10 ⁻²	9.54×10 ⁻³	1.09×10 ⁻²	30	达标
	 电泳干燥炉(1#)废气		排放浓度	mg/m ³	0.217	0.243	0.207	0.222	/	/
2024.12.2	排放口(DA010-1)	氮氧化物	折算浓度	mg/m ³	0.369	0.413	0.352	0.378	/	/
			折算浓度	mg/m ³	1.73×10 ⁻³	1.83×10 ⁻³	1.64×10 ⁻³	1.73×10 ⁻³	300	达标
			排放浓度	mg/m ³	1.31×10 ⁻²	1.05×10 ⁻²	1.23×10 ⁻²	1.20×10 ⁻²	/	/
		二氧化硫	折算浓度	mg/m ³	2.22×10 ⁻²	1.79×10 ⁻²	2.08×10 ⁻²	2.03×10 ⁻²	/	/
			排放速率	kg/h	1.04×10 ⁻⁴	7.93×10 ⁻⁵	9.74×10 ⁻⁵	9.36×10 ⁻⁵	200	达标

			· · · · · · · · · · · · · · · · · · ·			检测	结果		执行标	达标情
采样日期	检测点位置	检测	则项目	单位	第1次	第2次	第3次	平均值	准	况
			排放浓度	mg/m ³	1.4	1.6	1.5	1.5	/	/
		低浓度颗粒物	折算浓度	mg/m ³	2.4	2.8	2.5	2.6	/	/
内沙工幅的 (24) 底		排放速率	kg/h	1.14×10 ⁻²	1.22×10 ⁻²	1.07×10 ⁻²	1.14×10 ⁻²	30	达标	
		排放浓度	mg/m ³	0.324	0.274	0.333	0.310	/	/	
2024.11.27	2024.11.27 电泳干燥炉(2#)废	氮氧化物	折算浓度	mg/m ³	0.551	0.466	0.566	0.528	/	/
全球放口(DA010-2)	_	排放速率	kg/h	2.64×10 ⁻³	2.10×10 ⁻³	2.39×10 ⁻³	2.38×10 ⁻³	300	达标	
		二氧化硫	排放浓度	mg/m ³	2.17×10 ⁻²	1.90×10 ⁻²	2.06×10 ⁻³	2.04×10 ⁻²	/	/
			折算浓度	mg/m ³	3.69×10 ⁻²	3.23×10 ⁻²	3.51×10 ⁻²	3.48×10 ⁻²	/	/
			排放速率	kg/h	1.77×10 ⁻⁴	1.45×10 ⁻⁴	1.48×10 ⁻⁴	1.57×10 ⁻⁴	200	达标
			排放浓度	mg/m ³	1.7	1.0	1.3	1.3	/	/
		低浓度颗粒物	折算浓度	mg/m ³	2.8	1.8	2.3	2.3	/	/
			排放速率	kg/h	1.38×10 ⁻²	7.67×10 ⁻³	9.95×10 ⁻³	1.05×10 ⁻²	30	达标
	由沙工場的(241) 南		排放浓度	mg/m ³	0.297	0.339	0.303	0.313	/	/
2024.12.2	电泳干燥炉(2#)废 气排放口(DA010-2)	氮氧化物	折算浓度	mg/m ³	0.505	0.576	0.515	0.532	/	/
	**(1非) X (DAU10-2)		排放速率	kg/h	2.41×10 ⁻³	2.60×10 ⁻³	2.32×10 ⁻³	2.44×10 ⁻³	300	达标
			排放浓度	mg/m ³	2.10×10 ⁻²	1.93×10 ⁻²	2.02×10 ⁻³	2.02×10 ⁻²	/	/
		二氧化硫	折算浓度	mg/m ³	3.57×10 ⁻²	3.29×10 ⁻²	3.43×10 ⁻²	3.43×10 ⁻²	/	/
			排放速率	kg/h	1.71×10 ⁻⁴	1.48×10 ⁻⁴	1.54×10 ⁻⁴	1.58×10 ⁻⁴	200	达标

立 採口加	松洞上 /5里	4人加工		A A		检测	结果		44 	计控制
采样日期	检测点位置	检测项	, Ħ	单位	第1次	第 2 次	第3次	平均值	执行标准	达标情况
			排放浓度	mg/m ³	1.6	2.3	1.5	1.8	/	/
		低浓度颗粒物	折算浓度	mg/m ³	3.0	2.4	2.1	2.5	20	达标
			排放速率	kg/h	5.56×10 ⁻³	9.34×10 ⁻³	6.60×10 ⁻³	7.17×10 ⁻³	/	/
	2024 11 25 日始成年 世 七日 (D 4 021)		排放浓度	mg/m ³	< 6	< 6	6	< 6	/	/
2024.11.25	锅炉废气排放口(DA021)	氮氧化物	折算浓度	mg/m ³	< 6	8	8	7	50	达标
			排放速率	kg/h	7.0×10^{-3}	1.6×10 ⁻³	2.6×10 ⁻³	3.7×10 ⁻³	/	/
		二氧化硫	排放浓度	mg/m ³	< 3	< 3	< 3	< 3	/	/
		二氧化硫	折算浓度	mg/m ³	< 3	< 3	< 3	< 3	50	达标
			排放速率	kg/h	< 1.0×10 ⁻²	< 1.2×10 ⁻²	< 1.3×10 ⁻²	< 1.2×10 ⁻²	/	/
			排放浓度	mg/m ³	1.8	1.3	1.4	1.5	/	/
		低浓度颗粒物	折算浓度	mg/m ³	1.9	2.6	2.1	2.2	20	达标
			排放速率	kg/h	5.92×10 ⁻³	4.82×10 ⁻³	5.56×10 ⁻³	5.43×10 ⁻³	/	/
			排放浓度	mg/m ³	< 6	< 6	< 6	< 6	/	/
2024.11.26	锅炉废气排放口(DA021)	氮氧化物	折算浓度	mg/m ³	6	6	7	6	50	达标
			排放速率	kg/h	1.3×10 ⁻²	1.5×10 ⁻²	2.0×10 ⁻²	1.6×10 ⁻²	/	/
			排放浓度	mg/m ³	< 3	< 3	< 3	< 3	/	/
		二氧化硫	折算浓度	mg/m ³	< 3	< 3	< 3	< 3	50	达标
			排放速率	kg/h	< 9.9×10 ⁻³	< 1.1×10 ⁻²	< 1.2×10 ⁻²	< 1.1×10 ⁻²	/	/
备注: <表	备注: <表示小于检出限。									

四廿日田	松测上产 型	4人、河山工子		以 (六		检测	结果		执行	达标
采样日期	检测点位置	检测项	l 目	单位	第1次	第 2 次	第3次	平均值	标准	情况
			排放浓度	mg/m ³	1.9	1.1	1.3	1.43	/	/
		低浓度颗粒物	折算浓度	mg/m ³	3.3	1.9	2.2	2.45	30	达标
 		排放速率	kg/h	2.94×10 ⁻⁴	2.75×10 ⁻⁴	2.80×10 ⁻⁴	2.83×10 ⁻⁴	/	/	
		排放浓度	mg/m ³	1.90	2.13	1.97	2.00	/	/	
2024.11.27	2024.11.27	氮氧化物	折算浓度	mg/m ³	3.23	3.62	3.35	3.40	300	达标
废气排放口(DA007-1)		排放速率	kg/h	2.95×10 ⁻⁴	5.31×10 ⁻⁴	4.23×10 ⁻⁴	4.16×10 ⁻⁴	/	/	
			排放浓度	mg/m ³	3.03×10 ⁻²	3.18×10 ⁻²	2.90×10 ⁻²	3.04×10 ⁻²	/	/
		二氧化硫	折算浓度	mg/m ³	5.15×10 ⁻²	5.41×10 ⁻²	4.93×10 ⁻²	5.16×10 ⁻²	200	达标
			排放速率	kg/h	4.69×10 ⁻⁶	7.96×10 ⁻⁶	6.23×10 ⁻⁶	6.29×10 ⁻⁶	/	/
			排放浓度	mg/m ³	1.8	1.1	1.6	1.5	/	/
		低浓度颗粒物	折算浓度	mg/m ³	3.0	1.9	2.7	2.5	30	达标
			排放速率	kg/h	4.59×10 ⁻⁴	2.75×10 ⁻⁴	4.50×10 ⁻⁴	3.95×10 ⁻⁴	/	/
	曲枕袋海沙扣工爆岭(14)		排放浓度	mg/m ³	1.96	2.18	2.08	2.07	/	/
2024.11.28	曲轴箱清洗机干燥炉(1#)	氮氧化物	折算浓度	mg/m ³	3.33	3.71	3.54	3.53	300	达标
			排放速率	kg/h	5.01×10 ⁻⁴	5.44×10 ⁻⁴	5.85×10 ⁻⁴	5.43×10 ⁻⁴	/	/
			排放浓度	mg/m ³	2.39×10 ⁻²	2.48×10 ⁻²	2.67×10 ⁻²	2.51×10 ⁻²	/	/
		二氧化硫	折算浓度	mg/m ³	4.07×10 ⁻²	4.22×10 ⁻²	4.54×10 ⁻²	4.28×10 ⁻²	200	达标
			排放速率	kg/h	6.10×10 ⁻⁶	6.21×10 ⁻⁶	7.50×10 ⁻⁶	6.60×10 ⁻⁶	/	/

SAVE DE LEWISTA										
采样日期	检测点位置	检测项	H	单位		检测	结果		执行	达标
水件口粉	位 例总位直	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F	于亚	第1次	第 2 次	第 3 次	平均值	标准	情况
			排放浓度	mg/m ³	1.5	1.8	1.4	1.6	/	/
		低浓度颗粒物	折算浓度	mg/m ³	2.6	3.1	2.4	2.7	30	达标
2024.11.25 曲轴箱清洗机干燥炉(2#)			排放速率	kg/h	3.04×10 ⁻⁴	3.60×10 ⁻⁴	3.09×10 ⁻⁴	3.24×10 ⁻⁴	/	/
		排放浓度	mg/m ³	3.26	3.04	3.16	3.15	/	/	
2024.11.27	2024.11.27	氮氧化物	折算浓度	mg/m ³	5.54	5.17	5.37	5.36	300	达标
废气排放口(DA007-2)		排放速率	kg/h	6.62×10 ⁻⁴	6.07×10 ⁻⁴	6.97×10 ⁻⁴	6.55×10 ⁻⁴	/	/	
			排放浓度	mg/m ³	3.18×10 ⁻²	3.55×10 ⁻²	3.07×10 ⁻²	3.27×10 ⁻²	/	/
		二氧化硫	折算浓度	mg/m ³	6.41×10 ⁻²	6.04×10 ⁻²	5.21×10 ⁻²	5.89×10 ⁻²	200	达标
			排放速率	kg/h	6.46×10 ⁻⁶	7.10×10 ⁻⁶	6.78×10 ⁻⁶	6.78×10 ⁻⁶	/	/
			排放浓度	mg/m ³	1.7	1.1	1.3	1.4	/	/
		低浓度颗粒物	折算浓度	mg/m ³	2.9	1.8	2.2	2.3	30	达标
			排放速率	kg/h	4.78×10 ⁻⁴	3.10×10 ⁻⁴	3.48×10 ⁻⁴	3.79×10 ⁻⁴	/	/
	世种签建洪和工幅炉(24)		排放浓度	mg/m ³	2.97	3.13	2.87	2.99	/	/
2024.11.28	曲轴箱清洗机干燥炉(2#) 废气排放口(DA007-2)	氮氧化物	折算浓度	mg/m ³	5.05	5.32	4.88	5.08	300	达标
		次\ +\ 1\177	排放速率	kg/h	8.35×10 ⁻⁴	8.83×10 ⁻⁴	7.70×10 ⁻⁴	8.29×10 ⁻⁴	/	/
			排放浓度	mg/m ³	3.48×10 ⁻²	3.84×10 ⁻²	3.67×10 ⁻²	3.66×10 ⁻²	/	/
		二氧化硫	折算浓度	mg/m ³	5.91×10 ⁻²	6.53×10 ⁻²	6.25×10 ⁻²	6.23×10 ⁻²	200	达标
			排放速率	kg/h	9.77×10 ⁻⁶	1.08×10 ⁻⁵	9.85×10 ⁻⁶	1.01×10 ⁻⁵	/	/

采样	检测点					检测结果			
日期	位置		泣 测项目	単位	第1次	第2次	第3次	执行标准	达标情况
2024 11 26	◆公共個中日(P 4 01 2)	油烟	排放浓度	mg/m ³	0.936	0.718	0.727	2	达标
2024.11.26	.11.26 食堂油烟出口(DA012)		排放速率	kg/h	9.36×10 ⁻³	7.18×10 ⁻³	7.27×10 ⁻³	/	/
217 D HI	LA 181 1- 12- III			34 /).		检测结果		/	/
采样日期	检测点位置	<u>^</u>	於 测项目	单位	第 4 次	第 5 次	平均值	/	/
2024 11 26	公共加山口 (D4012)).L. lim	排放浓度	mg/m ³	0.918	0.835	0.827	2	达标
2024.11.26	食堂油烟出口(DA012)	油烟	排放速率	kg/h	9.18×10 ⁻³	8.35×10 ⁻³	8.27×10 ⁻³	/	/
采样	检测点	1.		 公 仁		检测结果		/	/
日期	位置	<u></u>	ঐ测项目	单位	第1次	第 2 次	第3次	/	/
2024 11 27	公共周山口(□1010)	244 JATI	排放浓度	mg/m ³	0.731	0.756	0.794	2	达标
2024.11.27	食堂油烟出口(DA012)	油烟	排放速率	kg/h	7.31×10 ⁻³	7.56×10 ⁻³	7.94×10 ⁻³	/	/
立状□ #□	ᄊᄱᅡᅛᄱ	TV		× />		检测结果		/	/
采样日期	检测点位置	<u></u>	à 测项目	単位	第 4 次	第 5 次	平均值	/	/
2024 11 27	公共周山口(□1012)	244 JATI	排放浓度	mg/m ³	0.782	0.799	0.772	2	达标
2024.11.27	食堂油烟出口(DA012)	油烟	排放速率	kg/h	7.82×10 ⁻³	7.99×10 ⁻³	7.72×10 ⁻³	/	/
备注:油烟平均值为5次数据平均,执行标准为《饮食业油烟排放标准(试行)》(GB18483-2001)标准。									

						检	测结果		执行标	达标情
采样日期	检测点位置	检测巧	5目	单位	第1次	第2次	第 3 次	平均值/最大 值	准	况 况
2024 11 25		II. ET I.A. V. I.A.	排放浓度	mg/m ³	26.0	21.5	21.0	22.8	/	/
2024.11.25	1#电泳+烘干废气进口	非甲烷总烃	排放速率	kg/h	8.83×10 ⁻²	7.39×10 ⁻²	7.28×10 ⁻²	7.83×10 ⁻²	/	/
2024 11 26	1//由沙山州工成层进口	H III III III II II	排放浓度	mg/m ³	22.1	20.6	20.9	21.2	/	/
2024.11.26	1#电泳+烘干废气进口	非甲烷总烃	排放速率	kg/h	7.66×10 ⁻²	7.42×10 ⁻²	7.62×10 ⁻²	7.57×10 ⁻²	/	/
	1.11中分,卅二两层山口	H III III III III	排放浓度	mg/m ³	2.49	2.32	2.21	2.34	60	达标
2024.11.25	1#电泳+烘干废气出口	非甲烷总烃	排放速率	kg/h	9.11×10 ⁻³	8.91×10 ⁻³	8.45×10 ⁻³	8.82×10^{-3}	/	/
	(DA002)	臭气浓	度	无量纲	549	630	549		800	达标
		나 ㅁ ☞ 쏘 ☞	排放浓度	mg/m ³	3.13	2.42	2.28	2.61	60	达标
2024.11.26	1#电泳+烘干废气出口	非甲烷总烃	排放速率	kg/h	1.17×10 ⁻²	9.12×10 ⁻³	8.68×10 ⁻³	9.83×10 ⁻³	/	/
	(DA002)	臭气浓	皮度	无量纲	360	549	549		60 达	达标
2024 11 25		H CO IP 쓰시기	排放浓度	mg/m ³	30.1	22.6	22.7	25.1	/	/
2024.11.25	2#电泳+烘干废气进口	非甲烷总烃	排放速率	kg/h	0.256	0.196	0.194	0.215	/	/
2024.11.26	2.1.由沙口供工 嵌层 进口	非甲烷总烃	排放浓度	mg/m ³	19.2	22.5	21.8	21.2	/	/
2024.11.20	2#电泳+烘干废气进口	非甲灰总定	排放速率	kg/h	0.168	0.197	0.191	0.185	/	/
	2.4.由注证供工库层山口	非甲烷总烃	排放浓度	mg/m ³	3.15	2.78	2.65	2.86	60	达标
2024.11.25	2#电泳+烘干废气出口	非甲灰总定	排放速率	kg/h	2.86×10 ⁻²	2.54×10 ⁻²	2.43×10 ⁻²	2.61×10 ⁻²	/	/
	(DA009)	臭气浓	皮度	无量纲	630	478	478		800	达标
	2//由沙元州工家层山口	H H II II II II II	排放浓度	mg/m ³	2.98	3.45	3.66	3.36	60	达标
2024.11.26		非甲烷总烃 -	排放速率	kg/h	2.70×10 ⁻²	3.11×10 ⁻²	3.27×10 ⁻²	3.03×10 ⁻²	/	/
	(DA009)		度	无量纲	478	630	549		800	达标
备注: 非甲烷总烃为 1h 采集 4 个样,报告只体现 1h 平均值。除臭气浓度以最大值评价之外,其余指标以平均值评价。										

(2) 无组织废排放

厂界无组织污染物非甲烷总烃、臭气浓度浓度均低于《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中表 6 企业边界大气污染物浓度限值,颗粒物浓度均低于《大气污染物综合排放标准》(GB16297-1996)表 2 中的无组织排放监控浓度限值。

厂区内无组织污染物非甲烷总烃浓度均低于《挥发性有机物无组织排放控制标准》(GB37822-2019)表 A.1厂区内 VOCs 无组织排放限值中的特别排放限值,颗粒物浓度均低于《铸造工业大气污染物排放标准》(GB39726-2020)表 A.1厂区内颗粒物无组织排放限值。无组织排放监测点位见图 3-3,监测期间气象参数见表 9-12,无组织排放监测结果见表 9-13。

表 9-12 监测期间气象参数

采样日期	采样时间	天气情况	温度(℃)	风向	气压 (kPa)	风速 (m/s)
2024.11.25	10:00-12:07	阴	14.5	东	102.2	2.4
2024.11.25	12:02-14:09	阴	14.8	东	102.2	3.3
2024.11.25	14:02-16:11	阴	15.0	东	102.1	2.8
2024.11.25	16:03-18:10	阴	14.0	东	102.2	3.1
2024.11.26	09:50-12:10	晴	13.9	东	102.3	2.7
2024.11.26	11:50-14:10	晴	14.1	东	102.5	2.5
2024.11.26	13:54-16:09	晴	14.9	东	102.5	2.7
2024.11.26	15:55-18:10	晴	14.0	东	102.5	3.0

注:表中监测数据引自监测报告 HJ240317 号。

0

表 9-13 无组织废气排放监测结果

采样	检测点	17 기계 그로 다				检测结	手果		执行标	达标情
日期	位置	检测项目	单位	第1次	第2次	第 3 次	第 4 次	平均值/最大值	准	况
		非甲烷总烃	mg/m ³	0.99	1.00	0.80	0.71	0.88	/	/
	上风向	总悬浮颗粒物	ug/m³	212	225	207	232	219	/	
		臭气浓度	无量纲	< 10	< 10	< 10	< 10	< 10	/	/
		非甲烷总烃	mg/m ³	1.86	1.81	1.47	1.32	1.62	4	达标
	下风向1	总悬浮颗粒物	ug/m³	291	262	248	270	268	1000	达标
		臭气浓度	无量纲	< 10	< 10	< 10	< 10	< 10	20	达标
2024.11.25		非甲烷总烃	mg/m ³	1.22	1.08	1.03	1.30	1.16	4	达标
	下风向 2	总悬浮颗粒物	ug/m³	263	255	273	287	270	1	达标
		臭气浓度	无量纲	< 10	< 10	< 10	< 10	< 10	1 20 4 1 20	达标
		非甲烷总烃	mg/m ³	1.69	1.50	1.30	1.57	1.52	4	达标
	下风向3	总悬浮颗粒物	ug/m³	265	239	255	290	262	1	达标
		臭气浓度	无量纲	< 10	< 10	< 10	< 10	< 10	20	达标
	铸造车间外	总悬浮颗粒物	ug/m³	284	253	272	247	264	5000	达标
		非甲烷总烃	mg/m ³	0.64	0.67	0.72	0.72	0.69	/	/
	上风向	总悬浮颗粒物	ug/m³	199	241	182	248	218	/	
		臭气浓度	无量纲	< 10	< 10	< 10	< 10	< 10	/	/
		非甲烷总烃	mg/m ³	1.03	0.94	0.78	1.83	1.15	4	达标
2024.11.26	下风向1	总悬浮颗粒物	ug/m³	257	269	276	312	279	1000	达标
		臭气浓度	无量纲	< 10	< 10	< 10	< 10	< 10	20	达标
		非甲烷总烃	mg/m ³	1.63	1.57	1.38	1.24	1.46	4	达标
	下风向 2	总悬浮颗粒物	ug/m³	295	284	275	267	280	1	达标
		臭气浓度	无量纲	< 10	< 10	< 10	< 10	< 10	20	达标

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测报告

采样	检测点	4人》则17万 口	A C			检测组	· · · · · · · · · · · · · · · · · · ·		执行标	达标情
日期	位置	检测项目	单位	第1次	第2次	第 3 次	第 4 次	平均值/最大值	准	况
		非甲烷总烃	mg/m ³	1.33	1.34	0.88	1.04	1.15	4	达标
	下风向 3	总悬浮颗粒物	ug/m³	331	262	287	277	289	1000	达标
		臭气浓度	无量纲	< 10	< 10	< 10	< 10	< 10	20	达标
	铸造车间外	总悬浮颗粒物	ug/m³	238	277	259	234	252	5000	达标
备注: < 表示小于检出限。除臭气浓度以最大值评价之外,其余指标以平均值评价。其中非甲烷总烃为 1h 采集 4 个样,报告只										
体现 1h 平均值。										

表中监测数据引自监测报告 HJ240317 号。

9.2.2.2 厂界噪声

加西贝拉压缩机有限公司东、南、西、北厂界二日的昼、夜间噪声均达到GB12348-2008《工业企业厂界环境噪声排放标准》3类标准。敏感点昼、夜间噪声均达到《声环境质量标准》(GB 3096-2008)厂界噪声监测点位见图 3-3,厂界噪声监测结果见表 9-15,敏感点噪声监测结果见表 9-16。

4公加口 田	松测卡位型	丰温扭汗	松加叶亩	检测组	± dB (A)	地 / 字标准	计控制加
检测日期	检测点位置	声源描述	检测时间	Leq	Lmax	执行标准	达标情况
	东厂界	机械	16:36-16:41	60	/	65	达标
2024. 11. 25	南厂界	机械	16:24-16:29	61	/	65	达标
2024.11.25	西厂界	机械	16:08-16:13	61	/	65	达标
	北厂界	机械	16:47-16:52	63	/	65	达标
	东厂界	机械	22:20-22:25	51	65	55	达标
2024. 11. 25	南厂界	机械	22:10-22:15	46	69	55	达标
2024. 11. 25	西厂界	机械	22:03-22:08	42	58	55	达标
	北厂界	机械	22:28-22:33	50	63	55	达标
	东厂界	机械	16:42-16:47	61	/	65	达标
2024, 11, 26	南厂界	机械	16:27-16:32	57	/	65	达标
2024. 11. 20	西厂界	机械	16:13-16:18	60	/	65	达标
	北厂界	机械	16:51-16:56	60	/	65	达标
	东厂界	机械	22:09-22:14	48	64	55	达标
2024 11 26	南厂界	机械	22:01-22:06	50	52	55	达标
2024. 11. 26	西厂界	机械	23:14-23:19	47	59	55	达标
	北厂界	机械	22:19-22:24	47	61	55	达标

表 9-15 厂界噪声监测结果

表 9-16 敏感点噪声监测结果

			•							
检测日期	检测点	声源	检测	检测结果 dB(A)					执行标准	达标情况
巡侧口朔	位置	描述	时间	L10	L50	L90	σ	Leq	1人11 小小庄	丛柳 九
2024. 11. 25	明珠公寓	机械	17:20-17:40	57. 1	51.0	48. 0	3.8	55. 4	60	达标
2024. 11. 25	明珠公寓	机械	22:46-23:06	45.8	42.3	39. 6	2.4	43. 2	50	达标
2024 11 26	明珠公寓	机械	17:08-17:28	53. 3	48. 2	45. 5	3.9	53. 9	60	达标
2024. 11. 26	明珠公寓	机械	22:45-23:05	40.8	39. 2	38. 6	1.4	40.0	50	达标

注:表中监测数据引自监测报告 HJ240317 号。

9.2.2.4 固体废物

全厂废铅蓄电池(900-052-31)委托嘉兴鸿泰环保科技有限公司处置,废油(900-249-08)委托杭州大地海洋环保股份有限公司处置,废包装材料(900-041-49)、废乳化液(含金属屑)(900-006-09、废油桶(900-249-08)委托绍兴鑫杰环保科技有限公司处置,沉淀污泥(336-064-17)、滤渣(336-064-17)委托昱源宁海环保科技股份有限公司处置;含油污泥(900-200-08)委托慈溪市远达环保科技有限公司处置,废过滤介质(900-041-49)、废活性炭(900-039-49)、漆渣(900-252-12)、离子交换树脂(900-015-13)、废试剂瓶(900-047-49)、

废超滤膜 900-041-49) 含油废抹布手套 (900-041-49) 委托浙江春晖固废处理有限公司处置。

金属边角料、炉渣、集尘灰、废钢丸收集后外卖综合利用,生活垃圾委托当地环卫部门统一清运处置。

9.2.2.5 污染物排放总量核算

(1) 废水污染物年排放量

根据全厂水平衡图 3-5,得知企业全厂废水排放量为 80072 吨。根据本公司的废水排放量和嘉兴市联合污水处理有限责任公司废水排放标准(该污水处理厂排放标准执行《城镇污水处理厂污染物排放标准》(GB18918-2002)中的一级 A标准)。废水监测因子排放量见表 9-16。

表 9-16 企业废水监测因子年排放量

项目	化学需氧量	氨氮
入环境排放量(吨/年)	4. 00	0. 400

(2) 颗粒物、二氧化硫、氮氧化物、VOCs 年排放量

该公司各废气处理设施正常运行,年运行时间约为600小时(年工作300天,两班制,10h/班)。DA011锅炉根据环评,日工作时间6小时计,年运行时间为1800小时,根据监测报告数据,计算得出该企业废气污染因子年排放量。(计算方式=平均排放速率×废气处理设施运行时间)。其中DA011锅炉废气排放口氮氧化物二氧化硫低于检出限,以1/2最低检出限报出,同时用该数值参加统计计算,壳封焊废气(DA008)有两个排放口,工艺相同,只做一个废气排放口,相关数值计算时排放速率×2,曲轴箱废气(DA007)有4个排放口,工艺相同,只做2个废气排放口,相关数值计算时排放速率×2。排放速率均值见表9-17,废气监测因子排放量见表9-18。

表 9-17 各排放口排放速率均值

污染因子	颗粒物排放速率	二氧化硫排放速	氮氧化物排放速	非甲烷总烃排放
排放口	均值(kg/h)	率均值(kg/h)	率均值(kg/h)	速率均值(kg/h)
熔化废气 (DA001)	0. 0224	/	/	/
落砂废气 (DA003)	0.0696	/	/	/
砂处理废气 (DA004)	0. 0393	/	/	/
混砂废气 (DA005)	0.048	/	/	/
清理抛丸废气(DA006)	0.077	/	/	/
壳封焊废气(DA008)	0. 0235	/	/	/
电泳干燥 1 废气 (DA010-1)	0.011	0.000089	0.00177	/
电泳干燥2废气(DA010-2)	0.011	0.000158	0.0024	/
锅炉废气 (DA011)	0.0063	0.0053	0. 0132	/
曲轴箱1废气(DA007-1)	0. 00034	0. 0000064	0.00048	/

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测 报告

曲轴箱2废气(DA007-2)	0.00035	0. 0000084	0.00074	/
电泳烘干 1 废气 (DA002)	/	/	/	0. 00933
电泳烘干 2 废气 (DA009)	/	/	/	0.0282

备注: 监测数据引自监测报告 HJ240317 号,《环境空气质量监测规范(试行)》若样品浓度低于监测方法 检出限时,则该监测数据应标明未检出,并以 1/2 最低检出限报出,同时用该数值参加统计计算。

表 0-19	密与 污	沙田子	年排放量
AY 37 10	1 1/27 1.45	7 44 701 1	

	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	*****	_	
污染因子	颗粒物排放量(吨	二氧化硫排放量	氮氧化物排放量	非甲烷总烃排放
排放口	/a)	(吨/a)	(吨/a)	量 (吨/a)
熔化废气 (DA001)	0. 1344	/	/	/
落砂废气 (DA003)	0. 4176	/	/	/
砂处理废气 (DA004)	0. 2358	/	/	/
混砂废气 (DA005)	0. 288	/	/	/
清理抛丸废气(DA006)	0.462	/	/	/
壳封焊废气(DA008)	0. 282	/	/	/
电泳干燥 1 废气 (DA010-1)	0.066	0.0005	0.0106	/
电泳干燥 2 废气 (DA010-2)	0.066	0.00095	0.0144	/
锅炉废气 (DA011)	0.011	0.0095	0. 0238	/
曲轴箱1废气(DA007-1)	0.0041	0.000077	0.0058	/
曲轴箱2废气(DA007-2)	0.0042	0.00010	0.0089	/
电泳烘干1废气(DA002)	/	/	/	0.056
电泳烘干2废气(DA009)	/	/	/	0.169
排放总量 (吨)	1.971	0.01	0.064	0. 225

无组织非甲烷总烃,按照 HJ240317 号,1#电泳+烘干废气处理设施效率 87.0%,2#电泳+烘干废气处理设施效率 85.8%。收集效率根据环评均按 90%计算,1#电泳+烘干无组织废气排放量为 0.043 吨/年,2#电泳+烘干无组织废气排放量 0.119 吨/年,造型浇铸无组织废气排放量根据环评排放量为 2.556 吨/年,有组织非甲烷总烃排放量为 0.225 吨,挥发性有机物排放量为 2.943 吨/年

(3) 总量控制

企业全厂废水排放总量废水排放总量为 80072 吨/年,化学需氧量排放量为 4.00 吨/年,氨氮排放量为 0.400 吨/年,颗粒物排放量为 1.971 吨/年,二氧化硫排放量为 0.01 吨/年,氮氧化物排放量为 0.064 吨/年,VOC_s排放量为 2.943 吨/年,低于项目总量控制指标(废水排放量 98922 吨/年,化学需氧量 \leq 4.946 吨/年,氨氮 \leq 0.495 吨/年,颗粒物 \leq 34.797 吨/年,二氧化硫 \leq 0.01 吨/年,氮氧化物 \leq 0.16 吨/年,VOCs \leq 3.550 吨/年),符合总量控制要求。

9.2.2.6 辐射

本次项目无辐射设施。

9.3 工程建设对环境的影响

本项目对环境影响可忽略不计,本次验收不分析。

10. 以新带老整改情况

源项	环节	要点	现有项目情况	是否 符合
	容器、包装袋	1. 容器或包装袋在非取用状态时是否加盖、封口,保持密闭; 盛装过 VOCs 物料的废包装容器是否加盖密闭。 2. 容器或包装袋是否存放于室内,或存放于设置有雨棚、 遮阳和防渗设施的专用场地。	项目对非取用时电 泳漆等进行加盖,存 放于仓库。	符合
		3. 储罐类型与储存物料真实蒸气压、容积等是否匹配,是 否存在破损、孔洞、缝隙等问题。	不涉及。	/
VOCs 物料	挥发性有 机液体储 罐	4. 内浮顶罐的边缘密封是否采用浸液式、机械式鞋形等高效密封方式。 5. 外浮顶罐是否采用双重密封,且一次密封为浸液式、机械式鞋形等高效密封方式。 6. 浮顶罐浮盘附件开口(孔)是否密闭(采样、计量、例行检查、维护和其他正常活动除外)。	不涉及。	/
储存		7. 固定顶罐是否配有 VOCs 处理设施或气相平衡系统。 8. 呼吸阀的定压是否符合设定要求。 9. 固定顶罐的附件开口(孔)是否密闭(采样、计量、例 行检查、维护和其他正常活动除外)。	不涉及。	/
	储库、料仓	10. 围护结构是否完整,与周围空间完全阻隔。 11. 门窗及其他开口(孔)部位是否关闭(人员、车辆、设备、物料进出时,以及依法设立的排气筒、通风口除外)。	冷冻油储罐围护结构完整,与周围空间完全阻隔。.门窗及其他开口(孔)部位关闭(人员、车辆、设备、物料进出时,以及依法设立的排气筒、通风口除外)。	符合
	液 VOCs 物料	1. 是否采用管道密闭输送,或者采用密闭容器或罐车。	冷冻油采用管道密 闭输送。	符合
VOCs 物料 转移	粉状、粒 状 VOCs 物料	2. 是否采用气力输送设备、管状带式输送机、螺旋输送机等密闭输送方式,或者采用密闭的包装袋、容器或罐车。	不涉及。	/
和输送	挥发性有 机液体装 载	3. 汽车、火车运输是否采用底部装载或顶部浸没式装载方式。 4. 是否根据年装载量和装载物料真实蒸气压,对 VOCs 废气采取密闭收集处理措施,或连通至气相平衡系统;有油气回收装置的,检查油气回收量。	不涉及。	/
T.#	VOCs物料 投加和卸 放	1. 液态、粉粒状 VOCs 物料的投加过程是否密闭,或采取局部气体收集措施;废气是否排至 VOCs 废气收集处理系统。 2. VOCs 物料的卸(出、放)料过程是否密闭,或采取局部气体收集措施;废气是否排至 VOCs 废气收集处理系统。	项目电泳漆投加过 程密闭,电泳工序均 在密闭涂装车间进 行,均配备废气收集 处理系统。	符合
工过 VOC 无织 放 艺程 放	化学反应 单元	3. 反应设备进料置换废气、挥发排气、反应尾气等是否排至 VOCs 废气收集处理系统。 4. 反应设备的进料口、出料口、检修口、搅拌口、观察孔等开口(孔)在不操作时是否密闭。	不涉及。	/
	分离精制 单元	5. 离心、过滤、干燥过程是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至 VOCs 废气收集处理系统。 6. 其他分离精制过程排放的废气是否排至 VOCs 废气收集处理系统。 7. 分离精制后的母液是否密闭收集;母液储槽(罐)产生的废气是否排至 VOCs 废气收集处理系统。	不涉及。	/
	真空系统	8. 采用干式真空泵的,真空排气是否排至 VOCs 废气收集	不涉及。	/

		1以口		
		处理系统。 9. 采用液环(水环)真空泵、水(水蒸汽)喷射真空泵的,工作介质的循环槽(罐)是否密闭,真空排气、循环槽(罐)排气是否排至 VOCs 废气收集处理系统。		
l I	配料加工 与产品包 装过程	10. 混合、搅拌、研磨、造粒、切片、压块等配料加工过程,以及含 VOCs 产品的包装(灌装、分装)过程是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至 VOCs 废气收集处理系统。	不涉及。	/
	含 VOCs 产品的使 用过程	11. 调配、涂装、印刷、粘结、印染、干燥、清洗等过程中使用 VOCs 含量大于等于 10%的产品,是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至 VOCs 废气收集处理系统。 12. 有机聚合物(合成树脂、合成橡胶、合成纤维等)的混合/混炼、塑炼/塑化/熔化、加工成型(挤出、注射、压制、压延、发泡、纺丝等)等制品生产过程,是否采用密闭设备,或在密闭空间内操作,或采取局部气体收集措施;废气是否排至 VOCs 废气收集处理系统。	项目电泳、烘干在密 闭车间内,有废气收 集处理系统。	符合
	其他过程	13. 载有 VOCs 物料的设备及其管道在开停工(车)、检维修和清洗时,是否在退料阶段将残存物料退净,并用密闭容器盛装;退料过程废气、清洗及吹扫过程排气是否排至VOCs 废气收集处理系统。	不涉及。	/
设备 管组 件漏	LDA 工作	1. 企业密封点数量大于等于 2000 个的,是否开展 LDAR 工作。 2. 泵、压缩机、搅拌器、阀门、法兰等是否按照规定的频次进行泄漏检测。 3. 发现可见泄漏现象或超过泄漏认定浓度的,是否按照规定的时间进行泄漏源修复。 4. 现场随机抽查,在检测不超过 100 个密封点的情况下,发现有 2 个以上(不含)不在修复期内的密封点出现可见泄漏现象或超过泄漏认定浓度的,属于违法行为。	/	/
敞开一	废水集输 系统	1. 是否采用密闭管道输送;采用沟渠输送未加盖密闭的,废水液面上方 VOCs 检测浓度是否超过标准要求。 2. 接入口和排出口是否采取与环境空气隔离的措施。	废水液面上方 VOCs 检测浓度符合标准 要求。	符合
液面	废水储 存、处理 设施	3. 废水储存和处理设施敞开的,液面上方 VOCs 检测浓度 是否超过标准要求。 4. 采用固定项盖的,废气是否收集至 VOCs 废气收集处理 系统。	液面上方 VOCs 检测浓度符合标准要求。	符合
	开式循环 冷却水系 统	5. 是否每 6 个月对流经换热器进口和出口的循环冷却水中的 TOC 或 POC 浓度进行检测;发现泄漏是否及时修复并记录。	不涉及。	/
有组 织 VOCs 排放	排气筒	1. VOCs 排放浓度是否稳定达标。 2. 车间或生产设施收集排放的废气, VOCs 初始排放速率大于等于 3 千克/小时、重点区域大于等于 2 千克/小时的, VOCs 治理效率是否符合要求; 采用的原辅材料符合国家有关低 VOCs 含量产品规定的除外。 3. 是否安装自动监控设施,自动监控设施是否正常运行,是否与生态环境部门联网。	VOCs 排放浓度稳定 达标,本项目 VOCs 初始排放速率远小 于 2 千克/小时,因 此,废气处理效率无 要求。	符合
	冷却器/ 冷凝器	1. 出口温度是否符合设计要求。 2. 是否存在出口温度高于冷却介质进口温度的象。 3. 冷凝器溶剂回收量。	不涉及。	/
设施	吸附装置	4. 吸附剂种类及填装情况。 5. 一次性吸附剂更换时间和更换量。 6. 再生型吸附剂再生周期、更换情况。 7. 废吸附剂储存、处置情况。	按要求定期更换活 性炭,废活性炭委托 有资质的处理单位 处置。	符合
	催化氧化 器	8. 催化(床)温度。 9. 电或天然气消耗量。 10. 催化剂更换周期、更换情况。	不涉及。	/

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目竣工环境保护验收监测 报告

热氧化炉	11. 燃烧温度是否符合设计要求。	不涉及。	/
洗涤器/ 吸收塔	酸碱性控制类吸收塔,检查洗涤/吸收液 pH 值。 13. 药剂添加周期和添加量。 14. 洗涤/吸收液更换周期和更换量。 15. 氧化反应类吸收塔,检查氧化还原电位(ORP)值。	不涉及。	/
台账	企业是否按要求记录台账。	项目建成后,要求企业 VOCs 治理设施运行台账完整,定期检查 VOCs 治理设备,应有详细的购买及更换台账。	符合
	暂未制订行业排放标准的,原则上按照颗粒物、二氧化硫、 氮氧化物排放限值分别不高于 30、200、300 毫克/立方 米实施改造。	烘干炉颗粒物、二氧 化硫、氮氧化物排放 浓度分别不高于 30、200、300毫克/ 立方米。	符合
其它	建立健全大气污染物排放监测监控体系,强化监测数据质量控制。	烘干炉废气实施监 测计划。	符合
	严格控制工业炉窑生产工艺过程及相关物料储存、输送等 无组织排放,在保障生产安全的前提下,采取密闭、封闭 等有效措施,有效提高废气收集率,产尘点及车间不得有 可见烟粉尘外逸。生产工艺产尘点(装置)应采取密闭、 封闭或设置集气罩等措施。	烘干炉均密闭,天然 气燃烧废气全部收 集后于 15 米高排气 筒排放。	符合

11. 验收监测结论

10.1 环保设施调试运行效果

根据试生产期间的调试运行情况,全厂环保治理设施均能正常运行。竣工验收废水、废气、噪声监测数据能达到相关排放标准;项目污染治理及排放基本落实了环评及批复要求。

10.1.1 环保设施处理效率监测结果

验收监测期间,本公司的污水处理设施运行正常。根据对处理设施二日平均去除效率:化学需氧量 76.5%,五日生化需氧量 73.0%,总磷 70.5%。

验收监测期间,该项目的环保设施均运行正常。1#电泳+烘干废气处理设施效率 87.0%,2#电泳+烘干废气处理设施效率 85.8%。熔化废气处理设施 61.9%,混 砂废气处理设施效率 98.1%,砂处理废气处理设施 62.6%,壳封焊废气处理设施效率 87.8%。

10.1.2 废水监测结果

企业废水入管网口污染物 pH、化学需氧量、石油类、阴离子表面活性剂、五日生化需氧量、石油类、总锰和悬浮物浓度日均值(范围)均低于《污水综合排放标准》(GB 8978-1996)表 4 三级标准,氨氮、总磷浓度日均值均低于《工业企业废水氮、磷污染物间接排放标准》(DB 33/887-2013)表 1 排放限值,总氮浓度日均值均低于《污水排入城镇下水道水质标准》(GB/T 31962-2015)表 1 标准。

10.1.3 废气监测结果

该项目全厂DA001(熔化废气)、DA003(落砂)、DA004(砂处理废气)、DA005(混砂废气)、DA006(清理(抛丸)废气)污染物低浓度颗粒物浓度均低于《铸造工业大气污染物排放标准》(GB39726-2020)中表1大气污染物排放限值。DA002(1#电泳+烘干废气)、DA009(2#电泳+烘干废气)污染物非甲烷总烃、臭气浓度浓度均低于《工业涂装工序大气污染物排放标准》(DB33/2146-2018)表2大气污染物特别排放限值。DA008(壳封焊废气)污染物低浓度颗粒物浓度及排放速率均低于《大气污染物综合排放标准》(GB16297-1996)表2中的二级标准。DA007(曲轴箱清洗机干燥炉废气)、DA010(电泳干燥炉废气)污染物SO₂、NOx、颗粒物浓度均低于《关于印发<浙江省工业炉窑大气污染综合治理实施方案>的通

知》(浙环函[2019]315 号)中的限值要求(颗粒物、二氧化硫、氮氧化物排放限值分别不高于 30、200、300毫克/立方米)。DA011(锅炉废气)污染物 S02、颗粒物浓度均低于《锅炉大气污染物排放标准》(GB13271-2014)表 3 大气污染物特别排放限值,N0x 浓度均低于执行"《关于印发<2020 年嘉兴市区大气污染质量攻坚方案>的通知》(嘉生态示范市创[2020]34号)要求"。DA012(食堂油烟)污染物油烟均低于《饮食业油烟排放标准(试行)》(GB18483-2001)中的标准要求。

厂界无组织污染物非甲烷总烃、臭气浓度浓度均低于《工业涂装工序大气污染物排放标准》(DB33/2146-2018)中表 6 企业边界大气污染物浓度限值,颗粒物浓度均低于《大气污染物综合排放标准》(GB16297-1996)表 2 中的无组织排放监控浓度限值。

厂区内无组织污染物非甲烷总烃浓度均低于《挥发性有机物无组织排放控制标准》(GB37822-2019)表 A.1厂区内 VOCs 无组织排放限值中的特别排放限值,颗粒物浓度均低于《铸造工业大气污染物排放标准》(GB39726-2020)表 A.1厂区内颗粒物无组织排放限值。

10.1.4 厂界噪声监测结果

加西贝拉压缩机有限公司东、南、西、北厂界二日的昼、夜间噪声均达到 GB12348-2008《工业企业厂界环境噪声排放标准》3 类标准。敏感点噪声达到《声环境质量》(GB 3096-2008)2 类标准。

10.1.5 固(液)体废物调查结果

加西贝拉压缩机有限公司的固体废物处置基本符合 GB 18599-2020《一般工业固体废物贮存和填埋污染控制标准》和 GB 18597-2023《危险废物贮存污染控制标准》的要求。

10.1.6 总量控制结论

加西贝拉压缩机有限公司全厂废水排放总量废水排放总量为 80072 吨/年,化学需氧量排放量为 4.00 吨/年,氨氮排放量为 0.400 吨/年,颗粒物排放量为 1.971 吨/年,二氧化硫排放量为 0.01 吨/年,氮氧化物排放量为 0.064 吨/年,V0Cs排放量为 2.943 吨/年,低于项目总量控制指标(废水排放量 98922 吨/年,化学需氧量 \leq 4.946 吨/年,氨氮 \leq 0.495 吨/年,颗粒物 \leq 34.797 吨/年,二氧化硫 \leq 0.01 吨/年,氮氧化物 \leq 0.16 吨/年,V0Cs \leq 3.550 吨/年),符合总量控制

要求。

10.2 工程建设对环境的影响

本项目对环境影响可忽略不计,本次验收不分析。

10.3 验收监测总结论

加西贝拉压缩机有限公司嘉兴加西贝拉压缩机有限公司未来工厂建设技术改造项目达到《建设项目竣工环境保护验收技术指南 污染影响类》要求,满足竣工验收条件。

10.4 建议

无。

建设项目工程竣工环境保护"三同时"竣工验收登记表

填表单位(盖章):

填表人(签字):

项目经办人(签字):

	项目名称	加西贝拉	立压缩机有限公	司嘉兴力	1西贝拉 造项		限公司未来」	厂建设技术改	项目代				地点	嘉兴市秀洲区王店镇百乐路 256 号			
	行业类别 (分类管理名录)		C3442	气体压缩	机机械	制造		建设性质 □新建 ☑式			☑改 龙术改造		项目厂区中心 经度/纬度			10' 53. 43" 3' 47. 35"	
	设计生产能力		新出	曾压缩机	600 万台	台		实际生产能	力		新增压缩机 600 万台			环评单	位 浙江	翠金环境	科技有限公司
7-11	环评文件审批机关		嘉兴市	生态环境	局(秀			审批文号 嘉:			嘉环秀建〔2024〕29 号			评文件类型			报告表
建设	开工日期	2024年8月						竣工日期 2024年8月			月	排	排污许可证申领时间			/	
建设项目	环保设施设计单位		/				环保设施施	工单位			/	4	工程排污	非污许可证编号 9133		30411609	101012K003U
	验收单位	加西贝拉压缩机4				 公司		环保设施监	测单位	嘉	另兴嘉卫检测科技	支有限公	:司	验收监测时	 寸工况		/
	投资总概算(万元)			1056	5			环保投资总概	[算(万元))	55			所占比例	(%)		0.5
	实际总投资 (万元)			1050	0			实际环保投	资 (万元)		55			所占比例(%)			0.5
	废水治理(万元) 利用	1 157	〔治理(万元)	噪声》	治理(万元	理(万元) 利用原 固体		固体废物治理(万元)		利用原有	4	绿化及生态(万元		利用原有			
	新增废水处理设施能力	/					·	新增废气处理设施能力 /		·		年平均工	作时		/		
	运营单位	加西	贝拉压缩机有					代码(或组织机	冯(或组织机构代码)		/		金收时间		2024. 11. 25-11. 28、2024. 12. 2		24. 12. 2
污染物排	污染物	原有排 放量(1)	本期工程 实际排放 浓度(2)	本期工 允许排 浓度(放	本期工程 产生量 (4)	本期工程 自身削减 量(5)	本期工程实际排放量(6)	本期工程 核定排放 总量(7	汝	本期工程"以新老"削减量(が1て _ま	全厂实际 非放总量 (9)	全厂核员 排放总量 (10)	』 区域 1	至衡替代 量(11)	排放增减量 (12)
放	房 水												8.0072	9. 8922	_		
设项目	化学需氧量			50									4.00	4. 946	_		
目与	NH-N ₃			5									0.400	0. 495	_		
详 遺 量	废气																
〜 控	一手门切り												0.01	0.010			
制	烟尘																
主	VOCs												2. 943	3. 550			
业	型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型型												0.064	0.16			
建	工业四件成初		— 1% to	+ - \- \- \- \- \- \- \- \- \- \- \- \- \			2) (0)		(4) (5)	$\overline{}$		(1)	VI E W			T++ /F	

注: 1、排放增减量: (+)表示增加,(-)表示减少; 2、(12)=(6)-(8)-(11), (9)=(4)-(5)-(8)-(11)+(1); 3、计量单位: 废水排放量——万吨/年; 废气排放量——万标立方米/年; 工业固体废物排放量——万吨/年; 水污染物排放浓度——毫克/升; 大气污染物排放浓度——毫克/立方米; 水污染物排放量——吨/年; 大气污染物排放量——吨/年。

附件1: